

Paul Fleurat-LessardIsabelle FourréFranck FusterFrédéric GuéganLaurent JoubertVanessa LabetBruno MadebèneChristophe MorellJulien PilméVincent TognettiEmilie-Laure Zins

for MoDerm Hands On

Foreword. All the calculations performed in these sessions were designed for TopChem2 or ADF. Note that some of these calculations could also be performed using other softwares. Additionally, we would like to emphasize that, for practical reasons, most of these calculations have been conducted at a basic level of theory. If you decide to use these tools in your research, we strongly encourage you to employ more appropriate and advanced levels of theory for more accurate results.

All required input files for TopChem2 (wfn/wfx/cubes files) as well as ADF input files, along with useful articles, are provided on the local computers in the **Bureau/MODERM**. Do not hesitate to consult the "Practical Work" given at the end of this document.

Hands on Quantum Chemical Topology: Working Sessions I

I. Introductive QTAIM analysis with TopChem2: Exploring Chemical Structures and Their Interactions

Julien Pilmé

Some help can be found from the following resource: B. Silvi, R.J. Gillespie, C. Gatti, "Electron Density Analysis." In Book: Comprehensive Inorganic Chemistry II, Elsevier, 2013, pp. 187-226

A. Run a QTAIM analysis with Topchem2 for some molecules provided in the following list:

C-C bonds : C_2H_6 , C_2H_4 , C_2H_2 , C_6H_6 , Cubane C_8H_8 R-O bonds : H_2O , H_2CO , H_2O_2 , CO, CO₂ R-BH₃ bonds : NH₃BH₃, B_2H_6 R-F bonds : LiF, F_2 , ClF₃(C_{2v}), FCl Intermolecular bonds : FH--CO, FH--OC

Command-line for performing your QTAIM analysis

- > topchem2 wfn:your_file.wfn (wfx:your_file.wfx) function:rho cp:y proc:4 refine:f vmd
 output:your_file.pop pop:cov
- **B.** Check the integration of total number of electrons in the output (file.pop), this corresponds to the total number of electrons in the system. This should be done each time to check the accuracy of the integration.
- **C.** Analysis of Results. We recall the QTAIM classification (Bianchi et al ¹):

	Scheme	$ ho_{bcp}$	$ abla^2 ho_{bcp}$	$ V_{bcp} /G_{bcp}$	H_{bcp}	
	Van der Waals	Low	>0	≈1	>0	
Closed-Shell –	ionic	Low	>0	≈ 1	>0	
	donor-acceptor	Low	>0	≈1	<0	
Shared -Shell 🚽	polarcovalent	High	< 0	>1	<0	
l	_covalent	High	< 0	>1	<0	

<u>Reminder</u>. if the electron density is high at the BCP and its Laplacian $\nabla^2 \rho_b$ is negative, the local concentration of charge indicates a **shared-shell** bonding. In contrast, if $\nabla^2 \rho_b$ is positive there is a depletion of charge which characterizes **closed-shell interactions**. Energetic local descriptors are also often used to differentiate two categories of

closed-shell bonding: the $|V_b|/G_b$ ratio that reflects the covalency magnitude of the interaction. If the latter ratio is smaller than 1, the kinetic energy density is the leading term and electrons are destabilized close to the BCP, no covalency is expected (for example pure ionic or van der Waals bonding). H_{bcp} = G_{bcp} + V_{bcp} is the total energy.

- i. The main output file (file.pop) contains all the compiled results. Find all the critical points: bond (bcp), cage (ccp) and ring (rcp). How many of each type are there? In each case, check that the Poincaré-Hopf theorem holds. Use molden to visualize their spatial distribution within the molecular structure (file_cprho.xyz).
- ii. From your result file 'xxx.pop', extract the values of some local descriptors (listed in the table below) computed at the bond critical points (BCP) locations. You can find the index of a BCP by visualizing them either with VMD (file xxx_rho.vmd) or Molden (file xxx_rho_cprho.xyz). Also extract the QTAIM charges and the delocalization index δ_{AB} . Use Lewis structures to aid in determining the nature (shared-shell or closed-shell) of the chemical interaction under investigation.

¹ R. Bianchi, G. Gervasio, D. Marabello. Experimental Electron Density Analysis of Mn₂(CO)₁₀: Metal–Metal and Metal–Ligand Bond Characterization. *Inorg. Chem.* **39** (2000), 2360.

iii. Assuming that the formal bond orders for C–C bonds are 1, 2, and 3 for ethane, ethylene, and acetylene respectively, fit the densities at the C-C BCP to a linear regression model. Then, calculate the expected bond order for benzene and cubane based on its density. Compare these results with the bond orders obtained from the delocalization indices.

	S	elected QT/	AIM descripto	rs	QTAIM charges		Delocalization	
		compu	ted at bcp				Index	bonding scheme?
	ρ_{bcp}	$ abla^2 ho_{bcp}$	V _{bcp} /G _{bcp}	H _{bcp}	Q(A)	Q(B)	δ _{ΑΒ}	
				C-0	bond	1		
H ₃ C-CH ₃								
H ₂ C-CH ₂								
HC-CH								
C_6H_6								
C ₈ H ₈								
	_	-		R-C) bond			
H₂C-O								
C-0								
0-C-0								
Н-О-Н								
НО-ОН								
R-BH ₃ bonds								
H ₃ NBH ₃								
H ₃ BBH ₃								
				R-F	bonds			
LiF								
F ₂								
F-Cl								
			In	termol	ecular bon	ds		
FH···CO								
FH…OC								

II. QTAIM descriptors and IQA energy decomposition wth ADF.

Laurent Joubert and Vincent Tognetti

Practical Work with AMS 2023

Launch of the program

AMS is a suite of softwares² organized in **modules**. We will first "launch" the main module, "AMSjobs" which corresponds to the AMS file explorer. It is not recommended, for the beginner, to use both the file explorer of the operating system and that of AMS. We only need AMS here. If there is no shortcut on your desktop, you will have to open a terminal and type the command: **\$AMSBIN/amsjobs**.

AMSJobs

You get a window containing all your AMS "**jobs**" (see Figure 1). Some "jobs" have been prepared for you and are visible in the default directory. A "job" is a set of files corresponding to a calculation that you launch with a given module (for example, geometry optimization of a molecule performed with the ADF molecular module). Everything is transparent via the GUI.

In the "AMSJobs" menu, choose "Preferences". We will now set an AMS option that will be very convenient for the future. In the "Module" tab, choose "AMSJobs" and then check the "Show Logfile" box. <u>Click "Save".</u> Close the preferences window.

		AMS	obs 2023.101: /Users/laurant	
- 52		Go to t	he narent folder	
	A0448	00101	le parent loidei	
	Applications			
	Creative Cloud Files			
1	Desirios			
1.5	Decompto			
	Decuments			
	Downloads			
p p	Library			
ц ри	Movies			
_ (J1)	Music	Subfolders		
_ pi	OneDrive - univ-roues.lr	0001010010		
51	Pictures		Default meda Ota	the states in the
	piares, available		Default mode Sta	itus of the job
	pierra_workdr.002		(sequential)	
1	D.Mit		(codecilies)	
1	Fundada a			
	analy the			
	trip.laurart.1813.D.nandax			<u> </u>
- 14	ting.laurent.3950.0.neindex			
0	 rapitalera detv1 		Sequential	•
=	> naphtatura		Sequential Sequential	
=	h Di RE Sco anto		Second Second	
5	+ DA. BlS. Popt. ando		Sequential	
-	> dendraisme	ADE lobs	Sequential	0
0	rapitaliere_dh14	ADI 0003	Sequential	•
0	raphteiera_6h1234		Sequential	•
-	raphtelera_6h12		Sequential	•
-	* conf2		Sequential	•
-	* confi		Sequential	•
	9			100 000

Figure 1: AMSJobs module (file explorer)

AMS modules

The various AMS modules (including AMSJobs) are accessible in the "SCM" menu of the software. Here are very briefly the most useful ones. You will discover them by following the tutorials:

- **AMSInput**: to build a molecule and prepare a calculation.
- **AMSView**: to visualize the results (calculation completed) in graphical form.
- **AMSMovie**: to follow the evolution of the calculation in the form of an animated film (changes in geometries, evolution of energy, a distance...).
- **AMSLevels**: to display an orbital energy diagram and also to allow easy visualization of orbitals.
- **AMSLogfile**: to display some information in real time (example: SCF cycles).
- **AMSOutput**: all results are collected in this file (useful if you are looking for details or details about the results).
- **AMSSpectra**: to allow you to visualize IR/Raman and UV-Visible calculated spectra.

² ADF 2023.1, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, <u>http://www.scm.com</u>.

1. Local (molecular graph) and condensed (atomic) QTAIM descriptors

If not yet done, it is recommended to follow some tutorials specific to topological approaches. In the "**Tutorial**" menu (on the SCM Web Page), type "**QTAIM**" in the search window (on the left) and select the first link: "*QTAIM (Bader), localized orbitals and conceptual DFT*". Follow the instructions to perform an initial **QTAIM analysis** of C_6H_6 .

2. Revealing electron delocalization through the Source Function (SF)

The source function (SF) introduced in late 90s by Bader and Gatti³ quantifies the influence of each atom in a system in determining the amount of electron density at a given point, regardless of the atom's remote or close location with respect to the point. The SF may thus be attractive for studying directly in the real space somewhat elusive molecular properties, such as "electron conjugation" and "aromaticity", that lack rigorous definitions as they are not directly associated to quantum-mechanical observables. In this exercise, based on reference⁴, we will see if the source function is able to reveal and measure the effects of electronic delocalization within model systems, namely the naphthalene molecule and some derivatives: 1,2-dihydronaphthalene, 1,4-dihydronaphtalene and 1,2,3,4-tetrahydronaphtalene (Figure 2).

Build and **pre-optimize** the structures with the **GFNFF** force field (select "geometry optimization" as the task, and right click on the notched wheel at the bottom of the screen for the choice of the force field). **Optimize** all geometries at PBE/DZP/LC (large core) level with "normal" numerical quality (relativity: none). Starting from these optimized structures, **go to the 'Properties' menu, check the 'QTAIM analysis' box, select a 'Full' level analysis and check the 'Source Function' box**. Finally, perform **single point calculations** at the PBE/TZ2P/NFC (no frozen core) level with a "good" numerical quality (Relativity: none).

In the first output file (naphthalene), find the results section concerning the source function (nonlocal QTAIM properties) and analyze the decomposition of the BCP electron density of the C9-C10 central bond (see Figure 1). Note the contribution (%) of the C9 and C10 bonded atoms, then the nearest neighboring atoms for one of the two rings (C8 and C5 for example) and finally the most distant carbon atoms (C6 and C7 for example). By symmetry, the contributions are identical for the other cycle.

Repeat the same procedure for the three naphthalene derivatives and analyze the results of the SF analysis for the C9-C10 bond in the same way, this time distinguishing between the left and right cycles. Are the results in line with your expectations?

³ R.F.W. Bader, C. Gatti. A Green's function for the density. *Chem. Phys. Lett.* **287** (1998), 233.

⁴ E. Monza, C. Gatti, L. Lo Presti, E. Ortoleva. Revealing electron delocalization through the source function. *J. Phys. Chem. A* **115** (2011), 12864.

3. IQA/QTAIM energy decomposition⁵

In the "**Tutorial**" menu, search for "**IQA**" and then select the link "<u>Interacting Quantum Atoms</u> (<u>IQA</u>)". Two mini-tutorials will teach you the basics of **IQA/QTAIM** analysis.

4. Analyzing hydrogen bonded complexes

In 2006, Fonseca Guerra and Bickelhaupt showed with state-of-the-art calculations that the hydrogen bonds in DNA Watson–Crick base pairs were not predominantly electrostatic phenomena and that electrostatic interactions and covalent contributions in these hydrogen bonds are in fact of the same order of magnitude⁶. This old debate is still a subject of controversy.

More recently, Galbraith et al.⁷ used a valence bond (VB) theory-based EDA and concluded that the HBs in F-H…FH, F-H…OH₂, F-H…NH₃, HO-H…OH₂, HO-H…NH₃ and H₂N-H…NH₃ are predominantly covalent in nature.

We propose to study the last six hydrogen-bonded systems in DFT, for example by optimizing them at the **B3LYP-D3/TZ2P/NFC** calculation level with a "**Good**" numerical quality and without taking relativistic effects into account. We will activate the **QTAIM** option in the "**Properties**" menu (**Full** level) as well as the **IQA** option (the source function may be interesting as well).

To analyze hydrogen bonds, the *local QTAIM properties* at *bond critical points* (BCPs) should first be examined. In practice, we have to locate the two atoms linked by a BCP in the "**Bond Paths**" section of the *QTAIM local properties*. After noting the **number** of the corresponding critical point (CP), you will have to search it in the list of CPs. Finally, the values of the most relevant *local descriptors* to characterize these hydrogen bonds will then be noted (see the corresponding **QTAIM course** to learn more about them).

In a second step, we will note the values of *relevant non-local descriptors* and then we will examine the *hydrogen bond inter-atomic interaction energies* (and their *covalent* and *non-covalent* contributions) in the **IQA** section. Do these results seem to be consistent with Galbraith et al.'s study? Are *dispersion effects* relevant?

Finally, we can study a **DNA base pair**. To do this, select "**GC_WC**" it in the **AMSJobs** file explorer and choose "**Output**" in the **SCM menu**. Or, if you prefer to run the calculation by yourself (approx. 45 minutes), choose the aromatic core at the bottom of the screen and **make just one energy point** from this pre-optimized structure using the level of theory used for the small hydrogen-bonded systems. Are the results in agreement with the findings of Fonseca Guerra and Bickelhaupt (use the same analysis tools)?

⁵ J.M. Guevara-Vela, E. Francisco, T. Rocha-Rinza, Á. Martín Pendás. Interacting quantum atoms—a review. *Molecules* **25** (2020), 4028.

⁶ C. Fonseca Guerra, F. M. Bickelhaupt in "Modern Methods for Theoretical Physical Chemistry of Biopolymers", Chapter 4 (2006), pp. 79-97, Elsevier Ed.

⁷ C. T. Nemes, C. J. Laconsay, J. M. Galbraith. Hydrogen bonding from a valence bond theory perspective: the role of covalency. *Phys. Chem. Chem. Phys.* **20** (2018), 20963.

5. REG/IQA analysis⁸

As before, look for the "**REG**" tutorial via the graphical interface (GUI) and then select the first <u>link</u> that appears (*A relative energy gradient (REG) analysis along a PES Scan (1D)*). This tutorial requires both the use of the AMS GUI but also a *command terminal*. Indeed, it is a post-processing of data via a Python script (see the tutorial for more information). This last part is a little more "technical" and requires mastering some basic Linux commands (if needed, refer to "<u>Working sessions on Linux</u>" document).

Concerning the script part, you will have to "type it" in a terminal/command-line. Here is how you must open the terminal:

- <u>Windows</u>: **Help** → **Command-line**, type **bash** and hit Enter.
- <u>MacOS</u>: Help \rightarrow Terminal.
- Linux : Open a terminal and run: source /path/to/ams/amsbashrc.sh

6. Studying a Diels-Alder reaction with an IQA/QTAIM energetic decomposition

In this section, we will use an **IQA/QTAIM energy decomposition** to study the well-known Diels-Alder reaction between cyclopentadiene and maleic anhydride, leading mainly to the *endo* product (Figure 3).

Figure 3: Diels-Alder reaction between cyclopentadiene and maleic anhydride

a) <u>Study of the *endo* transition state</u>

The majority of the *endo* form is generally explained by the role of secondary orbital interactions at the transition state. They are absent during the formation of the *exo* form.

The optimized Cartesian coordinates of the transition state (B3LYP-D3/TZP/NFC/Good) are provided to avoid the somewhat long study of the complete reaction path. This is the "DA_TS_endo.xyz" file. Create a **new AMS input** and import these coordinates via the "**File**" **menu** then **"Import Coordinates"**. Perform a *simple point calculation* at the calculation level indicated above (Relativity: None). **Do not forget to activate the QTAIM (Properties) option as well as IQA**.

Scan the **IQA section** of the output file. Note the values corresponding to the primary interactions (total energy, covalent and non-covalent contributions for each interaction). Next, examine the *secondary* interactions between the other two sp² carbons of diene and the carbons of the ketone functions of the dienophile. Compare them to primary interactions. Are they the only *secondary* interactions favoring the *endo product*?

⁸ J.C.R. Thacker, P.L.A. Popelier . The ANANKE relative energy gradient (REG) method to automate IQA analysis over configurational change. *Theor. Chem. Acc.* **136** (2017), 86.

b) <u>REG/IQA study of the reaction path</u>

For this part, it is essential to have made the REG tutorial accessible in the "Tutorial" section of the AMS documentation.

To go further in the analysis, we also provide the results of the "**IRC**" (Intrinsic Reaction Coordinate) path corresponding to this Diels-Alder reaction. For this purpose, it is advisable (but not mandatory) to open the "**DA_IRC_endo.ams**" job in **AMSJobs**. The AMS "**Movie**" module (accessible via the **SCM menu**) makes it possible to visualize the entire reaction path for the reaction studied.

Now open a *terminal window* and *run the new ADFREG.py* script (an updated version of the original REGScan.py script) using the following command line:

\$AMSBIN/plams ADFREG.py -v resultsdir=./DA_IRC_endo.results

After the script is complete (choose the *default values*), open the results file DA_IRC_endo.txt with a text editor. What are the interactions that promote the stability of the product *after* the transition state? Which ones go against the stabilization of this product on this same segment of the path?

It is also possible to examine the other segment, leading from a reaction intermediate to the transition state. What are the interactions responsible for the kinetic barrier? Which ones go against this barrier?

Hands on Quantum Chemical Topology: Working Sessions II

Julien Pilmé and Vanessa Labet

This session will be only performed with Gaussian and TopChem2. We provide most of wfn/wfx or cube files needed for this session. Geometries have been optimized at the B3LYP/6-31G(d, p) or B3LYP/6-31+G(d, p) level of theory.

Essential exercises

I. Nature of the chemical bond with ELF

The objective of this exercise is to determine and analyse the characteristics of specific bonds by using two approaches: visualizing the ELF localization domains and conducting the population analysis of basins.

A. Carbon-Carbon bonding scheme

Choose some molecules in the following list:

- H_3C-CH_3 ; H_2C-CH_2 ; buta-1,3-diène; cubane C_8H_8 ; carbene C_3H_2 ; acetylene $HC\equiv CH$; epoxy acetylene C_2O , benzene C_6H_6 , cyclobutadiene C_4H_4
- The exotic octatetraynyl radical C₈H (file c8h.wfx) was detected in 1996 inside the carbon star envelope IRC+10216.⁹
 (As C₈H is an open-shell system, add the option level:rohf to the command-line)
- The controversial nature of the bonding bridgehead carbon atoms in propellane C₅H₆.¹⁰ (to identify all the attractors, add the option th_cp :0.1 to the command-line)
- The C₂ controversial quadruble bond. There are diatomic molecules such as C₂ and CN⁺ (cyonium cation), which, by having eight valence electrons, could at least formally express quadruple bonding between the two atoms. ^{11,12}

Using the provided wfn/wfx files, run the Topchem2 software to process the ELF analysis ("function:elf" command), and answer the following questions:

i. Draw Lewis (resonant) structure(s) of the compound. Identify the ELF attractors, as well as the core and valence basins. With the help of your Lewis scheme, explain the ELF notation of each attractor and basins.

⁹ <u>https://ui.adsabs.harvard.edu/abs/1996A%26A...309L..27C/abstract</u>

¹⁰ Polo, V., Andres, J. and Silvi, B. New insights on the bridge carbon–carbon bond in propellanes: A theoretical study based on the analysis of the electron localization function. *J. Comput. Chem.* **28** (2007), 857. <u>https://doi.org/10.1002/jcc.20615</u>

¹¹ https://www.ch.imperial.ac.uk/rzepa/blog/?p=3065

¹² Shaik, S., Danovich, D., Wu, W. *et al.* Quadruple bonding in C_2 and analogous eight-valence electron species. *Nature Chem* **4** (2012). 195 <u>https://doi.org/10.1038/nchem.1263</u>

- ii. Look at the V(C, C) bonding basins and their corresponding populations: How many electrons are there in each case? What are the populations for the single, double and triple bonds according to the TopChem2 output? Does it agree with what you expected?
- iii. Calculate the weights w_a and w_b of the resonant structures for Benzene using only the V(C₁, C₂) basin population.

Polar A-B covalent systems and inductive effect. The inductive effect relates to the Β. through-bond transmission by successive polarization of the bonds between a dipolar or charged substituent and the reaction site. A quantitative assessment of the inductive effects of groups (substituents) should be correlated with the pKa. For example, we can predict the acidity of a carboxylic acid with the bond polarity (bpi) index of the basin V(C₁, C_2 defined as : $\operatorname{bpi}(\mathcal{C}_1, \mathcal{C}_2) = \frac{\overline{N}[V(\mathcal{C}_1, \mathcal{C}_2)|\mathcal{C}_1] - \overline{N}[V(\mathcal{C}_1, \mathcal{C}_2)|\mathcal{C}_2]}{\overline{N}[V(\mathcal{C}_1, \mathcal{C}_2)]}$

<u>**Reminder</u></u> : the bond polarity index (bpi)**. The combination of ELF and QTAIM topologies has led Raub and Jansen¹³ to propose a bond polarity index designed for a disynaptic basin V(X, Y) : bpi $(X, Y) = \frac{\overline{N}[V(X,Y)|X] - \overline{N}[V(X,Y)|Y]}{\overline{N}[V(X,Y)]}$, in which $\overline{N}[V(X,Y)]$ is the total population of the V(X,Y) basin, $\overline{N}[V(X,Y)|X]$ and $\overline{N}[V(X,Y)|Y]$ give the respective contributions of X and Y QTAIM basins to $\overline{N}[V(X,Y)]$. By definition, a strongly polarized bond yields an index close to -1 or +1.</u>

topchem2 wfn:file.wfn function:elf proc:4 refine:f vmd contrib:y

Please fill in the following table and draw conclusions about the inductive effect related to the substituent R of the carboxylic acid **RC-COOH**.

Group R	bpi (C ₁ , <mark>C</mark> 2)	рКа
CH ₂ CH ₃ (propionic)		4.87
CH ₃ (acetic)		4.76
CH ₂ OH (glycolic)		3.82
$CH_2NH_3^+$ (protonated glycine)		2.40
COOH (oxalic)		1.25
CF ₃ (trifluoroacetic)		0.25

C. A more difficult exercise, for a more in-depth analysis. Classify the following compounds in the appropriate category according to their ELF signatures: covalent, dative, ionic or charge-shift signature.

Some charge-shift (CSB) systems are gathered in the following source:

Charge-Shift Bonding—A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach. Chem. Eur. J.,S. Shaik et al , 2005.

¹³ Raub and Jansen, Th. Chem. Acc. **106**, 2001

If you suspect a dative bond, verify the topological changes (number of basins) occurring along the reaction path when the equilibrium structure is stretched (**the stretched structure was optimized in an open-shell formalism, add the following option to the command-line: level :uhf th_cp : 0.1**)

				•
Molecules	pop. V(A, B)	Stretched struc	ture (if available)	Category
		V(A) or V(B) ?	V(A) and V(B)?	
H ₃ B-NH ₃				
H ₃ C-CH ₃				
H ₃ B-BH ₃				
НО-ОН				
N-F ₃				
S-F ₄				
H ₂ N-NH ₂				

II. Hydrogen bonds

Hydrogen bonds are intermolecular interactions of the A-H...B where B has lone pairs. In this exercise, we try to correlate and predict the intermolecular interaction energies of FH······B systems by the value of the molecular electrostatic potential (MESP, also reported in the literature as MEP) computed at the location of the (3, 3) critical point, so-called V_{min} .¹⁴ The interaction energies should be also correlated with the core-valence bifurcation index (CVB). CVB is related to the ELF value computed at the FH······B (3, -1) critical point.¹⁵ We selected a small panel of molecules for the **B group**:

¹⁴ Gadre, S.R.; Suresh, C.H.; Mohan, N. Electrostatic Potential Topology for Probing Molecular Structure, Bonding and Reactivity. *Molecules* **26**(2021), 3289. <u>https://doi.org/10.3390/molecules26113289</u>

¹⁵ Alikhani, M.E., Fuster, F., Silvi, B. What Can Tell the Topological Analysis of ELF on Hydrogen Bonding? *Struct Chem* **16** (2005), 203. <u>https://doi.org/10.1007/s11224-005-4451-z</u>

A. The intermolecular interaction energy (E_{int}) FH······B has been computed at the B3LYP-D3/6-31G(d,p) level of theory for several B molecules (see table below). From the provided cubes files, find the location of the MESP (3, +3) critical points (minima) and identify the corresponding V_{min} (global minimal) for each B molecule.

	$MESP~V_{min}$	E _{int} (kcal/mol)
OC		-2.89
СО		-5.27
SH ₂		-5.89
OH ₂		-11.97
Methanol		-12.35
triazole C ₂ H ₃ N ₃		-13.98
azoline C ₄ H ₇ N		-18.29

topchem2 input:file_mep.cube rho_file:file_rho.cube function:mep proc:4 vmd

B. Display the MESP surfaces mapped onto the electron density isosurface using VMD:

vmd –e file_mep.cube.vmd

What kind of domains do you see?

- C. Use excel in order to analyse the correlation between the interaction energy and V_{min} and compute the parameters of the linear regression. Could you find nice correlations?
- D. Optimize the geometry at the B3LYP-D3/6-31G(d,p) level of theory and generate the wfn files for two new B molecules : NH₃ and formaldehyde (CH₂=O). Alternatively, you can also directly use the provided wfn/wfx files. Compute MESP Vmin; can you <u>predict</u> their intermolecular interaction energies with HF? (<u>reference values</u>: interaction energies CH₂=O: -9.06 kcal/mol, NH₃: -15.36 kcal/mol)

Reminder: The core-valence bifurcation index (CVB) is an ELF criterion designed to classify the hydrogen bonds¹⁵. It is directly connected the ELF value computed at the (3, -1) critical point which splits V(H, F) and V(B). It has been shown, in particular, that this latter value is roughly linked to the interaction energy between FH and B.

E. Calculate the the ELF value computed at the (3, -1) critical point which splits V(H, F) and V(B) for each FH…B molecule and fill the following Table.

topchem2 wfn:file.wfn function:cvb proc:4

molecule	ELF _(3, -1)	E _{int} (kcal/mol)
FH…OC		-2.89
FH ···CO		-5.27
FH ····H ₂ S		-5.89
FH ··· H₂O		-11.97
FH ··· methanol		-12.35
$FH \cdots triazole C_2H_3N_3$		-13.98
$FH \cdots azoline C_4H_7N$		-18.29

Visualizing non covalent interactions with the NCI Index

III. Comparing NCI and QTAIM analysis

A. Getting started with simple examples

✓ Perform an NCI analysis on the following systems already studied in the previous QTAIM session: C₆H₆, cubane, FH…OC, CH₄…CH₄

> topchem2 wfn:file.wfn function:nci vmd output:file_nci.pop proc:4
 > Visualize the corresponding 3D NCI plots: > vmd -e file.vmd

- The NCI regions seem to correspond to some QTAIM critical points: which ones? (If needed you can superimpose the QTAIM critical points by loading the file_rho_cprho.xyz file on top of the NCI file in VDM)
- Display the 2D NCI plot and check that the results are consistent with the QTAIM analysis performed previously (position of the electron density critical points, value of the electron density at these points).

> gnuplot file.gnu

What about the sign of λ_2 ? Is it in agreement with the chemical intuition?

Remin	der: It is established that there i	s a correlation between the shape of the NCI region and the
type o	f the QTAIM critical points:	
	SHAPE OF THE NCI REGION	Түре оғ QTAIM ср
	Planar	BCP (closed-shell)
	Cylindrical	RCP, BCP (shared interaction)

CCP, BCP (shared interaction), ACP

✓ Is it verified for these systems? Check it for other systems on which you performed a QTAIM analysis in the previous session.

B. More complicated cases

Spheroïdal

Benzene dimer

- ✓ Follow the same procedure as above for the benzene dimer.
- \checkmark What conclusion can you draw from the confrontation of the

QTAIM and NCI analysis? How can you explain this?

1,2-ethanediol

- ✓ Visualize the optimized geometry of 1,2-ethanediol.
- ✓ What are the H---O distances? Would you say that there is an intramolecular hydrogen bond?
- ✓ Perform a QTAIM analysis. Is there BCP for non covalent interactions?
- ✓ Perform a NCI analysis. Is there a NCI domain?
- ✓ What conclusion can you draw from the confrontation of both QTAIM and NCI analyses?

IV. Systems with multiple non-covalent interactions

A. Perform an NCI analysis for FH······CH₃OH.

- ✓ How many peaks do you see on the 2D NCI plot?
- ✓ How many NCI regions do you see on the 3D NCI plot?
- ✓ Try to associate each 2D peak with a NCI domain by modifying parameters in VMD.

How to modify the VMD parameters?

To change the RDG isovalue: In the VMD main window, click on *Graphics*, then *Representations*. In the *Draw Style* tab, you can change the value in the *Isovalue* section.

<u>To change the color scale</u>: In the main window, click on *Graphics*, then *Representations*. In *the Trajectory* tab, you can change the two values in the *Color Scale Data Range* section.

Be careful ! you may want to perform a QTAIM on this system. If you keep the default parameters, you will see in the output file that one critical point is missing (the Poincaré-Hopf relation does not hold!). To recover it you have to authorize the search for a critical point at a smaller minimal distance from atomic attractors. The default minimal value is 0.3 bohr. Decrease it at 0.2 bohr by typing:

topchem2 wfn:file.wfn function:rho cp:y atom_dist:0.2 output:file_rho.pop proc:4

B. Follow the same procedure for FH…azoline and FH…triazole.

✓ In the case of the FH …azoline, why don't you see the NCI domain associated to the hydrogen bond? *Tips: Confront the 2D NCI plot and the QTAIM analysis.*

Tip : In some cases, you may want to obtain an image of the 2D NCI plot for a smaller range than [-0.05 ; 0.05] for sign(λ_2)*p. This is possible by using additional options in the command line of Topchem:

topchem2 wfn:file.wfn function:nci vmd output:file_nci.pop proc:4 lambda_min:-0.01 lambda_max:0.01

✓ Create images of the 2D NCI plots of FH…CH₃OH, FH…azoline et FH…triazole for which peaks associated to hydrogen bonds do not appear.

Supplementary Exercices

V. ELF and VSEPR

The geometry of trifluoride chlorine CIF_3 can be simply rationalized by a VSEPR-type AX_3E_2 structures. In principle, there exist a one-to-one correspondence between the VSEPR domains and the localization basins of ELF.¹⁶ This exercise serves as an illustration of how the ELF topology can effectively help in the rationalization of both VSEPR and non-VSEPR structures.

- A. Optimize the geometry and generate the wfn files for each structure at the B3LYP/6-31+G(d) level. For the T-shaped structure, you can constrain the axial F-X-F angle to 87°. Alternatively, you can also directly use the provided wfn/wfx files. What structure is expected for the ground state of ClF_3 ? Is it consistent with VSEPR?
- B. Compute and display with VMD the ELF localization domains of the T-shaped C_{2v} and the planar D_{3h} type. Then, characterize the nature of Cl-F interactions for each case.

topchem2 wfn:file.wfn function:elf proc:4 refine:f vmd contrib:y th_cp:0.2

C. In principle the electronic structure of the ground state is expected to be associated with **five** VSEPR domains around the central atom (3 CI-F bonds, 2 CI lone-pairs). Is it consistent with a T-shaped C_{2v} or aD_{3h} structure ?

Chemical Reactivity with ELF

VI. Charge-transfer-assisted Hydrogen Bonds.

While the strength of the "classical hydrogen bond" **A-H······B** is typically lower than 15 kcal/mol, strong hydrogen bonds span more than 2 orders of magnitude and can result from charge-transfer-assisted HBs in polarizable systems. For a symmetric **O······H·····O** scheme, the H-atom is equally shared and no clear distinction can then be made between the donor and acceptor. Such a pattern could be evidenced for the enolic acetylacetone which contains a neutral donor and acceptor oxygen atoms connected by a system of conjugated double bonds (C_s structure). However, reinforcement of H-bonding and π -delocalization could lead to a symmetric C_{2v} intramolecular resonance-assisted where for example, the C-C and C=C bonds become equivalent.

¹⁶ Amaouch, M., Sergentu, D.-C., Steinmetz, D., Maurice, R., Galland, N., Pilmé, J. The bonding picture in hypervalent XF3 (X= Cl, Br, I, At) fluorides revisited with quantum chemical topology. *J. Comput. Chem.* **38** (2017), 2753–2762

This exercise aims to elucidate the nature of the intramolecular HB pattern for the enol optimized structure and target to propose a resonant scheme between the asymetric formal C_s structure and the symmetric resonance-assisted C_{2v} structure.

You can find help from the following sources:

Srinivasan, R., Feenstra, J. S., Park, S. T., Xu, S., Zewail, A. H. Direct determination of hydrogen-bonded structures in resonant and tautomeric reactions using ultrafast electron diffraction. *JACS* 126 (2004), 2266
Fuster, F., Silvi, B. Does the topological approach characterize the hydrogen bond? *Theor.l Chem. Acc.* 104 (2000), 13

- A. Obtain and visualize the ELF basins for enol the *prototypical* constrained C_{2v} symmetric structure. Identify the ELF attractors and the basins populations with the help of Figure 1. What ELF topology do you see for enol and the C_{2v} structure?
- B. The bond polarity index bpi(O₁, H) can be here related to resonant weights of the Lewis structures between the C_s (a) and C_{2v} structures according to a small linear system :

 $0.5 \omega_{Cs} + \omega_{C2v} = | bpi(O_1, H) |$ $\omega_{Cs} + \omega_{C2v} = 1$

Explain the construction of the proposed linear system. Solve the system for the optimized enol and comment your results.

VII. Forming & breaking bonds along reaction paths.

The ELF topology can be used for monitoring the evolution of electronic structure of reactants and transition states along the intrinsic reaction coordinate associated with the chemical pathway. The Diels-Alder reaction pathway between ethylene and 1,3-butadiene is here selected as an example.

You can find help from the following paper: *S. Berski, J. Andrés, B. Silvi, and L. R. Domingo* The joint use of catastrophe theory and electron localization function to characterize molecular mechanisms. A density functional study of the diels– alder reaction between ethylene and 1, 3-butadiene. J. Phys. Chem. A 107 (2003), 6014-6024

Some illustrative videos of different mechanisms are also available here: https://www.lct.jussieu.fr/pagesperso/silvi/recherche.html

The geometries have been optimized at the B3LYP/6-31G(d,p) level of theory along the reaction path. Some wfn files (**diels_xx.wfn**) have been obtained.

- A. For each file, identify the ELF attractors and basins with help of the Lewis schemes (be careful, the basin numbering can differ from above Lewis Figure).
- B. Look at the V(C, C) and V(C) basins and their corresponding populations. How many are there in each case? To help you, you can fill in the following table (the last column corresponds to the next question):

R (Å)	Total Energy	V(C ₃ , C ₄)	V(C ₁ , C ₆)	V(C ₃)	V(C ₄)	V (C ₂)	V(C ₅)	V(C ₂ , C ₃)	V(C ₄ , C ₅)	BET phase
2.75										
2.50										
2.27										
2.18										
2.10										
2.00										
1.55										

A. The chemical path can be split into several phases expected by **the Bond Evolution Theory (BET)**. Identify and classify these phases predicted by BET and provide a description of the mechanism in terms of "curly arrows". Do they align with your first expectations ?

VIII. Visualizing non covalent interactions with the NCI Index

1. Approaching water molecules

Source : Contreras-García, J., Yang, W., Johnson, E. R. Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. *The J. Phys. Chem. A*, **115** (2011), 12983. <u>https://pubs.acs.org/doi/pdf/10.1021/jp204278k</u> Perform an NCI analysis for two water molecules approaching each other.

Various intermolecular distances O······H have been selected: 3.5 Å, 3.0 Å, 2.5 Å, 2.2 Å, 1.9 Å,

1.6 Å.

- ✓ <u>2D NCI plots</u>: How do the number of peaks and the corresponding sign(λ_2)* ρ values change as the intermolecular distance decreases?
- ✓ <u>3D NCI plots</u>: How do the spatial extension of the NCI domain and its color(s) change as the intermolecular distance decreases?
- ✓ Try to summarize your observations to describe and analyze the change in the NCI signature as the intermolecular interaction evolves from no interaction to short-range repulsion.

2. Steric clash

Source : Laplaza, R., Boto, R. A., Contreras-García, J., Montero-Campillo, M. M. Steric clash in real space: biphenyl revisited. *Phys. Chem. Chem. Phys.* **22** (2020), 21251. https://pubs.rsc.org/en/content/articlepdf/2020/cp/d0cp03359f

In the biphenyl molecule the two phenyl rings are twisted (torsional angle of 44°). The reason generally given for this is a compromise between allowing π -delocalisation the rings (maximized stabilisation in the planar structure) and avoiding steric repulsion between ortho hydrogens (minimized destabilisation when the rings are perpendicular).

A. Planar structure for biphenyl

- ✓ How many QTAIM critical points of each type can you anticipate? Is it consistent with the Poincaré-Hopf theorem?
- ✓ Check your prediction by performing a QTAIM analysis (**biphenyl_0.wfx**).
- ✓ How can you characterize the H······H interaction? Attractive or repulsive? Support your conclusion by an NCI analysis.
- ✓ Perform an ELF analysis. Compare the shape and volume of the ELF basins around hydrogen atoms.

B. Optimal twisted structure

- ✓ Which modification in the number and type of QTAIM critical point can you anticipate when phenyl rings are twisted with an angle of 44°? (Be careful to the Poincaré-Hopf theorem!)
- ✓ Check your prediction by performing a QTAIM analysis (**biphenyl_opt.wfx**).
- ✓ In this optimal geometry, is the H……H interaction associated with an NCI domain?
- ✓ How do the shape and volume of the ELF basins around hydrogen atoms change with respect to the planar structure?

C. Varying the torsional angle

Perform QTAIM and NCI analysis of twisted biphenyl structures with varying torsional angles (all the .wfx files are provided).

- ✓ For which value of the torsional angle does the QTAIM critical points in the C-H·····C-H region disappear?
- ✓ What about the NCI domain?
- ✓ Reconstruct Fig. 4 of the above reference (see below)

Figure 4: Representation of the density on the BCP (red x marks), RCP (blue cross marks) and RDGCP (reduced density gradient critical point, lilac star marks) between phenyl rings versus the dihedral angle for the biphenyl molecule. Results at the B3LYP/def2-TZVP level of theory. (From Laplaza et al, *Phys. Chem. Chem. Phys.* **22** (2020), 21251)

Hands on Conceptual DFT : Working Sessions III

Frédéric Guégan, Vanessa Labet, Christophe Morell

1 Exercises with ADF

Quick start:

In ADF, every calculation options can be given through the graphical interface. Conceptual DFT calculations may be invoked from the input maker, in the dedicated section of the properties panel. The menu is quite self explanatory.

Bady Crease Gradients, Strass tensor Frequencies: Prequencies: Total charge: Conceptual DFT Strain productioner: Ensity productioner	Tak: Tak: Frequencias: Tak: Pronos and Elastic tensor Trak: Tak: Tak: Pronos and Elastic tensor Tak: Tak: <	Task: Task: Task: Prequencies: Task: Prequencies: Task: Prequencies: Task: Task: Prequencies: Task: Task: Task: Prequencies: Task: Task: Task: <	Image: State and Coders Gradients, Stress tensor II (I) (Foregoencies) Prequencies: Remony, WOA Total charge: Conceptual DT Con	In our Orders Gradients, Stress tensor II, II, Forgeneticis, VIDA Prequencis: Ramon, VIDA Total charge: Conceptual DFT Sep ploritation: Est, BRO, VIDA Conceptual DFT Est, BRO, VIDA Basis set: Maynetzaality, Virodet Maynetzaality Maynetzaality Maynetzaality	ADE Main Mode	al Prophytics Details Multil evel	0	ADF Main Model Properties	Details MultiLevel		Q
Gradients, Stress tensor Task: Prequencies: Tensor Remain, VIGA Spin plokination: Spin plokination: Spin plokination: ESR, EPR, EFG, 275 Unrestricted: ESR, EPR, EFG, 275 Unrestricted: ESR, EPR, EFG, 275 Unrestricted: Escatations (UV/Vis), CD Excatations (UV/Vis), CD Excatati	Task: Gradients, Stress tensor Prequencies: Theropychick/Stress tensor Prequencies: Theropychick/Stress Prequencies: Theropychick/Stress Total charge: Conceptual DFT Stress tensor Esk, EPK, EFG, 27S Urrestricties: Esk, EPK, EFG, 27S Urrestricties: Excations (U/Vol), CO KC functional: Franck-Conton Spectrum Relativity: Upperpolarizability Ugan Field DTT Spacing: Basis set: Conceptual DTT Magnetizability: Upperpolarizability Upperpolarizability: OpD (Optical Rotatory Dispersion) ObD (Optical Rotatory Dispersion) ObD (Optical Rotatory Dispersion) Other: Etot, Charge Transport Phanzability: VunderWaals X5	Task: Gradients, Stress tensor Prequencies: Honores and Elastic tensor Prequencies: Honores and Elastic tensor Prequencies: Honores and Elastic tensor Conceptual DFT Estatic tensor Conceptual DFT Estatic tensor Conceptual DFT Estatic tensor Conceptual DFT Estatic tensor Estatic tensor Prepuencies: Track: Estatic tensor Conceptual DFT Estatic tensor Estatic tensor Prepuencies: Track: Estatic tensor Conceptual DFT Estatic tensor Estatic tensor Prepuencies: Track: Estatic tensor Prozen core: MCD Minerkial quality: OID (Optical Rotatory Dispersion) Order Etor. Conseptual DFT Prozen core: MCD Minerkial quality: Prozen core: MCD Monoreviaasis Prozen core: MCD Minerkial quality: OID (Optical Rotatory Dispersion) Order Etor. Charge Transport, Pointer Kinger Kin	Task: Gradients, Stress tensor Frequencies: Amana, VIOA Frequencies: Amana, VIOA Tensic propriation: ESR, EPR, EFC, 275 Unrestrict: ESR, EPR, EFC, 275 Unrestrict: ESR, EVCV Excitations (UVIOS), CD Excitations (UVIOS), CD KC functional: Excitations (UVIOS), CD Excitations (UVIOS), CD Excitations (UVIOS), CD Basis set: Location (UVIOS), CD Upper Value (Excitations), Excitations (UVIOS), CD Excitations (UVIOS), CD Basis set: Location (UVIOS), CD Basis set: Location (UVIOS), CD Numerical quality: Magnetizability, Veret Magnetizability, Veret Border: MR MR Numerical quality: MR Numerical quality: MR VanDerWalas Excitations (UVIOS) Zonale Excitations (UVIOS) Excitations (UVIOS) MR MR Numerical quality: MR Numerical quality: MR MR MR MR Conceptual DFT (FDL): Excitations (UVIOS) Conceptual DFT (FDL): Excitations (UV	Task: Gradients, Stress tensor Prequencies: Monors and Easts tensor Prequencies: The modynamics Total charge Conceptual DFT Stress tensor ESA: EPA, EFA, 275 Unredrictes: ESA: EPA, 275 <th></th> <th>Bond Orders</th> <th></th> <th>Con</th> <th>ceptual DFT</th> <th>(</th> <th>90</th>		Bond Orders		Con	ceptual DFT	(90
Tasi: Phones and Easts tensor Remain. VIGA The modynamics Total charge: Conceptual DFT Sign: pisk-ination: ESR. EPR, EFG, 275 Unrestricted: ESR. EPR, EFG, 275 Unrestricted: Esr. Enderstrum Packed State Geometry Properties of reactivity domains: Properties of reactivity domains: Vs: Basis set: More field OfT Main Field OfT Spacing: Ugand Field OfT Spacing: Main Main Main Main Main Main Basis set: More field OfT Main Main Main Main Main Main Main Main Basis set: More field OfT Main Main Numerical guality: Ohd (optical Rotatory Dispersion) OHD Main Main VanDer/Wasis Xes Xes	Tasi: Higheregenergies Higheregenergies Tempediation Sand Elastic Deergies Frequencies: Tempediation Sand Elastic Deergies Total charge: Conceptual DFT Spin gesterization: ESR. EPR. EFO, 275 Urnestricted: ESR. EPR. EFO, 275 Track-Condon Spectrum Franck-Condon Spectrum Resite/Urnestricted: Franck-Condon Spectrum Higheregenergies Conceptual DFT Basis set: Logand Field DFT Ligand Field DFT Basis set: Numerical quality: OHG (Optical Rotatory Dispersion) OHG (Optical Rotatory Dispersion) OHG (Optical Rotatory Dispersion) OHG (Optical Rotatory Dispersion) <th>Task: In (Prequencia) Prequencia: Thermolynamics Total charge: Conceptual DFT Sigh polarizability ESR, IPR, EFG, 275 Unrestricted: ESR, IPR, EFG, 275 Excated State Geometry Eccations (IV/Ns), CD Excated State Geometry Eccated State Geometry Basis set: Eccated State Geometry Ugan Field DT Eccated Othata, NOD Relativity: Hyperplatrability, Verdet Prozen core: MCD Numerical quality: OfD (optical Rotatory Dispersion) OHD (optical Rotatory Dispersion) OfD (optical Rotatory Dispersion) Oral Vanda Treshold: Oral Vanda 0.000 XS Sign charge: Vandardwalas 0.001 XS Treshold: OthorWaals 0.005</th> <th>Task: In (Prequencia): Prequencia:: Thermodynamics Total charge: Conceptual DFT Superprint Total charge: Conceptual DFT Superprint Total charge: Esk, IPH, ErG, 2/5 Urrestriction: Conceptual DT Ugano Field DT Esk, IPH, ErG, 2/5 Numerical quality: ODi Optical Actatory Dispersion) Other: Esk, IPH, ErG, Arage Transport,, Numerical quality: ODi Optical Actatory Dispersion) Other: Esk, IPH, ErG, Arage Transport,, Numerical quality: ODi Optical Actatory Dispersion) Other: Esk, IPH, ErG, IPH,</th> <th>Task: In (Frequencies) Prequencies: Hornson, VROA Total charge: Conceptual DFT Signa population ESK, EPK, EFX, 275 Unrestriction: ESK-EVK, 275 Excrations (UV/N)s, CD Excrations (UV/N)s, CD Excrating UV/N Manage Hyperpolarizability Manage Hyperpolarizability, Verdet Manage Manage OD (optical Rotatory Dispersion) Other: Excration Hyperpolarizability Polycopy (optical Rotatory Dispersion) OD Other: Excration Hyperpolarizability Polycopy (optical Rotatory Dispersion) OD OD</th> <th></th> <th>Gradients, Stress tensor</th> <th></th> <th>Conceptual DET (EMO):</th> <th>Calculate</th> <th></th> <th></th>	Task: In (Prequencia) Prequencia: Thermolynamics Total charge: Conceptual DFT Sigh polarizability ESR, IPR, EFG, 275 Unrestricted: ESR, IPR, EFG, 275 Excated State Geometry Eccations (IV/Ns), CD Excated State Geometry Eccated State Geometry Basis set: Eccated State Geometry Ugan Field DT Eccated Othata, NOD Relativity: Hyperplatrability, Verdet Prozen core: MCD Numerical quality: OfD (optical Rotatory Dispersion) OHD (optical Rotatory Dispersion) OfD (optical Rotatory Dispersion) Oral Vanda Treshold: Oral Vanda 0.000 XS Sign charge: Vandardwalas 0.001 XS Treshold: OthorWaals 0.005	Task: In (Prequencia): Prequencia:: Thermodynamics Total charge: Conceptual DFT Superprint Total charge: Conceptual DFT Superprint Total charge: Esk, IPH, ErG, 2/5 Urrestriction: Conceptual DT Ugano Field DT Esk, IPH, ErG, 2/5 Numerical quality: ODi Optical Actatory Dispersion) Other: Esk, IPH, ErG, Arage Transport,, Numerical quality: ODi Optical Actatory Dispersion) Other: Esk, IPH, ErG, Arage Transport,, Numerical quality: ODi Optical Actatory Dispersion) Other: Esk, IPH, ErG, IPH,	Task: In (Frequencies) Prequencies: Hornson, VROA Total charge: Conceptual DFT Signa population ESK, EPK, EFX, 275 Unrestriction: ESK-EVK, 275 Excrations (UV/N)s, CD Excrations (UV/N)s, CD Excrating UV/N Manage Hyperpolarizability Manage Hyperpolarizability, Verdet Manage Manage OD (optical Rotatory Dispersion) Other: Excration Hyperpolarizability Polycopy (optical Rotatory Dispersion) OD Other: Excration Hyperpolarizability Polycopy (optical Rotatory Dispersion) OD OD		Gradients, Stress tensor		Conceptual DET (EMO):	Calculate		
Frequencies: Raman, VIOA Total charge: Conceptual DFT Sight pointstation: ESA, EPA, EPG, 255 Unrestricted: ESA, EPA, EPG, 255 Unrestricted: Estations (UV/Vis), CD Excited State Geometry Properties of reactivity domains: Yes Main VioCombinities: OUT Unrestricted: Excited State Geometry Properties of reactivity domains: Yes Basis set: Magnetizablity, Veriet OUT OUT OUT Basis set: MCD OUT OUT OUT OUT Numerical quality: OND (Optical Rotabus, NOD OUT OUT <td>Frequencies: Raman, VIQA Total charge: Conceptual DFT Sight polarizability: Conceptual Contractions Unrestricted: ETS-NOCV Excited State Geometry Fractions (UV/Vis), CD Excited State Geometry Properties of reactivity domains: Yes Main visit GW Properties of reactivity domains: Yes Basis set: Normal methods: 9.0 Domains (FMO): Basis set: Normal methods: 9.0 0.0 Numerical quality: ON 000 (Optical Rotatory Dispersion) 0.0 0.00 Oth (Discal Rotatory Dispersion) Ohn (Optical Rotatory Dispersion) 0.00 0.00 0.00 Orbit: Encorphilic attack: Yes 0.00 0.00 Post Torial Transhold: 0.00 0.0</td> <td>Frequencies: Raman, VDA Total charge: Conceptual DFT Spin podwitanton: ESR, EPR, EFG, 255 Unrestricted: ESR, EPR, EFG, 255 ETS-MOCV Excel State Geometry Presention: Unrestricted: Excel State Geometry Proporties of reactivity domains: Progenoise Control OW Relativity: Hyperpolarizability Ligand Field DFT Enclated Othitais, INO Magnetzability, Vendet Border: Magnetzability, Vendet Border: MR One (optical Instatory Tansport, Polarizability Numerical quality: One (optical Instatory Tansport, Polarizability VanderWaals Numerical quality: VanderWaals Numerical quality:</td> <td>Frequencies: Raman, VR0A Total charge: Conceptual DFT Softe poderization: ESR, EPR, EFG, ZFS Unrestrictios: ESR, EPR, EFG, ZFS Unrestrictios: ESR, EPR, EFG, ZFS Unrestrictios: Esc. dest State Geometry Properties of reactivity domains: Ver Data freid DT Data freid DT Ugan freid DT Data freid DT Drive: Data freid DT Data freid DT Data freid DT <!--</td--><td>Frequencies: Raman, WEA Total charge: Conceptual DFT Sign: pice/station: ESR, EPR, EFG, 275 Unrestricted: ETS-MOCY Excludions (UV/Mb, CD Excludions (UV/Mb, CD Basis set: Conceptual DFT Ugae Field DFT Basis set: Magnetizability, Verset Image: Conceptual DFT Numerical quality: Otho (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) Othorevinable Conceptual DFT (FDL</td><td>Task:</td><td>Phonons and Elastic tensor</td><td>0</td><td></td><td></td><td></td><td></td></td>	Frequencies: Raman, VIQA Total charge: Conceptual DFT Sight polarizability: Conceptual Contractions Unrestricted: ETS-NOCV Excited State Geometry Fractions (UV/Vis), CD Excited State Geometry Properties of reactivity domains: Yes Main visit GW Properties of reactivity domains: Yes Basis set: Normal methods: 9.0 Domains (FMO): Basis set: Normal methods: 9.0 0.0 Numerical quality: ON 000 (Optical Rotatory Dispersion) 0.0 0.00 Oth (Discal Rotatory Dispersion) Ohn (Optical Rotatory Dispersion) 0.00 0.00 0.00 Orbit: Encorphilic attack: Yes 0.00 0.00 Post Torial Transhold: 0.00 0.0	Frequencies: Raman, VDA Total charge: Conceptual DFT Spin podwitanton: ESR, EPR, EFG, 255 Unrestricted: ESR, EPR, EFG, 255 ETS-MOCV Excel State Geometry Presention: Unrestricted: Excel State Geometry Proporties of reactivity domains: Progenoise Control OW Relativity: Hyperpolarizability Ligand Field DFT Enclated Othitais, INO Magnetzability, Vendet Border: Magnetzability, Vendet Border: MR One (optical Instatory Tansport, Polarizability Numerical quality: One (optical Instatory Tansport, Polarizability VanderWaals Numerical quality: VanderWaals Numerical quality:	Frequencies: Raman, VR0A Total charge: Conceptual DFT Softe poderization: ESR, EPR, EFG, ZFS Unrestrictios: ESR, EPR, EFG, ZFS Unrestrictios: ESR, EPR, EFG, ZFS Unrestrictios: Esc. dest State Geometry Properties of reactivity domains: Ver Data freid DT Data freid DT Ugan freid DT Data freid DT Drive: Data freid DT Data freid DT Data freid DT </td <td>Frequencies: Raman, WEA Total charge: Conceptual DFT Sign: pice/station: ESR, EPR, EFG, 275 Unrestricted: ETS-MOCY Excludions (UV/Mb, CD Excludions (UV/Mb, CD Basis set: Conceptual DFT Ugae Field DFT Basis set: Magnetizability, Verset Image: Conceptual DFT Numerical quality: Otho (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) Othorevinable Conceptual DFT (FDL</td> <td>Task:</td> <td>Phonons and Elastic tensor</td> <td>0</td> <td></td> <td></td> <td></td> <td></td>	Frequencies: Raman, WEA Total charge: Conceptual DFT Sign: pice/station: ESR, EPR, EFG, 275 Unrestricted: ETS-MOCY Excludions (UV/Mb, CD Excludions (UV/Mb, CD Basis set: Conceptual DFT Ugae Field DFT Basis set: Magnetizability, Verset Image: Conceptual DFT Numerical quality: Otho (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) OHD (Potical Rotatory Dispersion) Othorevinable Conceptual DFT (FDL	Task:	Phonons and Elastic tensor	0				
Total charge: Conceptual DFT Sign polarizability: ESR. IPR., EFG. 255 Unrestricted: ESR. IPR., EFG. 255 Unrestricted: Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Relativity: Properties of reactivity domains: Yes Properties of reactivity domains: Yes Basis set: Ligand Field DFT Basis set: Magnetizability, Verdet Border: 7.0 Numerical quality: Oth Clopicial Analytics 0.005 Procent core: MKR 0.005 Numerical quality: Oth Clopicial Analytics 0.005 Polarizability: Polarizability 0.005 Polarizability: Oth Clopicial Analytics 0.005 Polarizability: VanDertivaals Xis VanDertivaals Xis Yes Xis Status 0.0 Xis Status Yes Charge change: 1.0	Total charge: Conceptual DFT Sigle polarization: ESR. IPR. EFG. 275 Unrestricted: ESR. IPR. EFG. 275 Unrestricted: Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Factor State Geometry Properties of reactivity domains: Yes Relativity: Hyperpolarizability Basis set: Locatized Ontical, NBO Locatized Ontical, NBO Include atoms: Yes Frazen core: MCP Basis set: OOD (Optical Rotatory Dispersion) NMR Numerical quality: OID (Optical Rotatory Dispersion) OID Other: Eto. Charge Transport, Point Totality Ood VanDerWasis XES Yes XES Include atoms: Yes Charge change: 1.0	Total charge: Conceptual DFT Skep polarizability: ESR, EPR, EFG, 25/S Unrestriction: ESR, EPR, EFG, 25/S Unrestriction: Escatolons (UV/Ns), CD KC functional: France-Condon Spectrum Praced State Generativy Properties of reactivity domains: Yes Basis set: Ligand Field DFT Basis set: Ligand Field DFT Momerical quality: Verdet Prozen core: MCD Numerical quality: OHD (Cpitical Rotatory Dispersion) OHD (Cpitical Rotatory Dispersion) OHD Plaarzability: Verdet Plaarzability: Yes Plaarzability: Verdet Plaarzability: O.000 VanDerWaals XES	Total charge: Conceptual DFT Sign polarizability: ESR. IPR., EFG. 255 Unrestricted: ESR. IPR., EFG. 255 Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Excations (UV/Vis), CD Relativity: Piperplaitzability Ugaed Field DFT Gammatics, NBD Basis set: Magnetizability, Verold: Numerical quality: OfD (Optical Rotatory Dispersion) OHD OfD (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) Polarizability OHD (Optical Rotatory Dispersion) Polarizability OHD (Optical Rotatory Dispersion) Polarizability VanDertivaals XES Sister Yes Table	Total charge: Conceptual DFT Skep polarizability: ESR, EPR, EFG, 25/S Unrestriction: ESR, EPR, EFG, 25/S Unrestriction: Exclutions (UVVb), CD KC functional: Pranck-Condon Spectrum Pranck Condon Spectrum Pranck-Condon Spectrum GW Mpperplaintability Ugand Field DFT Exclusions (UVVb), Verdet Frezen core: MCD Numerical quarty: OfD (Optical Rotatory Dispersion) OHD (Optical Rotatory Dispersion) OHD Praze NetWalas AES Conceptual DFT (FDL): Electrophilic attack: Praze NetWalas XES	Frequencies:	Raman, VROA Thermodynamics		Analysis level:	Normal	•	
Spin provider ESR. EPR, EPG, Z/S Unrestricted: ESR.EPR, EPG, Z/S Excited State Generaty Excited State Generaty Reakhity: GW Hyperpolarizability GW Basis set: Localized Orbitas, NBO Mayneticability: OB Hyperpolarizability: OB Hyperpolarizability: OB Mayneticability: OB Potern Core: NCA Numerical quality: OBC (optical Ratavy Dispersion) Display: O.0005 Opplay: O.0005 VanDerWaals Xets Site Site	Spin particulator: ESR. EPR, EPG, Z/S Unrestricted: ETS-MOCV Excited State Generatry Excited State Generatry France, Condon Spectrum Properties of reactivity domains: Yes Basis set: Localized Ontais, NBO Magnetizability O Bord reid DFT Basis set: Localized Ontais, NBO Magnetizability, Verdet Properties of reactivity domains: Yes Fracen core: MCO Numerical quality: ORD (Optical Rotatory Dispersion) O Oddr. Edge, Targe Transport, Poder: Edge, Charge Transport, Poder: Edge, Charge Transport, Outloof T Outloof T Yes Nucleophilic attack:	Spin providentities ESR. EPR, EFG, ZS Unrestricted: Excited State Generetry Excited State Generetry Properties of reactivity domains: Properties of reactivity domains: Ves Basis set: Localed Orbitals, NO Magnetizability Upen distribution Lipand Field OTT Basis set: Numerical quality: Other (optical Rotatory Dispersion) Other (optical Rotatory Dispersion) Other (optical Rotatory Dispersion)	Spin gearmater ESR. EPR, EPG, Z/S Unrestricted: Excited State Geometry Relativity: GW Age of gearmater GW May of field OFT GW Basis set: Localized Orbitas, NBO May of field OFT GW Poler (SW) GW Poler (SW) GW May of the State (SW) GW May of the State (SW) GW Poler (SW) </td <td>Spin particulator: ESR. EPR, EPG, Z/S Urrestricted: ESR. EPR, EPG, Z/S Excited State Geometry Fracencometry Fracencometry Include atoms: Winestricted: Excited State Geometry Basis set: Localized Ofbitas, NBO Magnetizability, Verdet Include atoms: More rice at a field OFT Bord read: Basis set: Localized Ofbitas, NBO More rice at a field OFT Include atoms: Yander Kaleguarty: OND (optical Rotacry Dispersion) Other: Educ, Charge Transport, Oddrawatas Potropertias of reactivity domains: Yes Potropertias of reactivity domains: Yes Spacing: Odd OND (optical Rotacry Dispersion) Ond Other: Educ, Charge Transport, Poderizability POLTDOFT Odd Other Wands XS XS Size XS Dispersion Outries of the state field of the state sta</td> <td>Total charge:</td> <td>Concentual DET</td> <td></td> <td>Atomic electronegativities:</td> <td>T Yes</td> <td></td> <td></td>	Spin particulator: ESR. EPR, EPG, Z/S Urrestricted: ESR. EPR, EPG, Z/S Excited State Geometry Fracencometry Fracencometry Include atoms: Winestricted: Excited State Geometry Basis set: Localized Ofbitas, NBO Magnetizability, Verdet Include atoms: More rice at a field OFT Bord read: Basis set: Localized Ofbitas, NBO More rice at a field OFT Include atoms: Yander Kaleguarty: OND (optical Rotacry Dispersion) Other: Educ, Charge Transport, Oddrawatas Potropertias of reactivity domains: Yes Potropertias of reactivity domains: Yes Spacing: Odd OND (optical Rotacry Dispersion) Ond Other: Educ, Charge Transport, Poderizability POLTDOFT Odd Other Wands XS XS Size XS Dispersion Outries of the state field of the state sta	Total charge:	Concentual DET		Atomic electronegativities:	T Yes		
Unrestrictes: ETS-NOCV Exctations (UV/Na), CD Maintains Upanet Field DT Basis set: Localed Orbitals, NBO Magnetizability, Verdet Magnetizability, V	Unrestrictes: ETS-NOCV Excted state desenetry Properties of reactivity domains: Yes Relativity: OW Spacing: 0.1 Basis set: Localed Orbitals, N80 Border: 7.0 Numerical quality: OB(Optical flotatory Dispersion) O Border: 0.001 Prozen core: MCD MMR O O.001 Border: 0.001 Numerical quality: OB(Optical flotatory Dispersion) O O O.003 O Prozen core: MCD MMR O O.000 O.000 O Numerical quality: OB(Optical flotatory Dispersion) O O O.000 O Pointrability: OR(Optical flotatory Dispersion) O O O O VanDerWaals XES O O O O O <	Unrestrictes: ETS-NOCV ExcRed State Geometry Franck-Contion Spectrum Pranck-Contionat: Franck-Contion Spectrum Metaltwity: OW OW Properties of reactivity domains: Yes Basis set: Localed Orbitals, NBO Magnetizability, Verset Border: 7,0 Prozen core: MCO Numerical quality: OB(Optical Rotatory Dispersion) O Other: Ext. Charge Transport,, Polarizability, Yes O Polarizability, Yes O O OB(Optical Rotatory Dispersion) O O Other: Ext. Charge Transport,, Polarizability, Poly Trooper Sampersion, O O Poly robust O O Opticity: Electrophilic attack: Yes VanDerWaals XES Charge change: 1.0	Unrestrictes: ETS-NOCV Excted state decementry Franck-Condon Spectrum Detativity: OW Beistivity: OW Basis set: Localeed Orbitals, NBO Monerical quality: MO Numerical quality: OGO (Optical Rotatory Dispersion) OR Orbital Constrainty Prozentiality: Orbital Constrainty Numerical quality: Orbital Notatory Dispersion) Orbital Strainty: Orbital Rotatory Dispersion) Orbital No Orbital Rotatory Dispersion) Orbital Strainty: Orbital Rotatory Dispersion) Polymerical ty: Orbital Rotatory Dispersion) Orbital Rotatory Dispersion Orbital Rotatory Dispersion) Orbital Rotatory Dispersion Orbital Rotatory Dispersion Orbital Rotatory Dispersion Orbital Rotatory Constructive	Unrestrictes: ETS-NOCV Exceed State Geometry Pranck-Contion Spectrum Pranck-Contionat: Pranck-Contion Spectrum Meathwity: OW Basis set: Hyperpolarizability Localled Orbitatis, NBO O Prozen core: MCD Prozen core: MCD Objectual IDST O Definition (Unrestruction of the Distribution of the Distributicon of the Distribution of the Distribution of the Distrib	Spin polarization:	ESR. EPR. EFG. 2FS		Include atoms:	+ -		
Becketains (U/WA), CD Domains (FMO): XX functional Excelsions (U/WA), CD Relativity: Grant Contrast, BDO Hyperpolarizability Localized Ontrast, BDO Localized Ontrast, BDO Grader: Magnetizability, Verdet Barder: Fraces core: MCD Numerical quality: ODD (Optical Rotatory Dispersion) Other: External to the Contrast, BDO Polarizability Polarizability Polarizability ODD (Optical Rotatory Dispersion) Other: External to the Contrast, BDO Polarizability Polarizability VanDer/Waals XE	Backstons (UV/MS), CD Domains (UV/MS), CD XC functional Excellations (UV/MS), CD Relativity: Properties of reactivity domains: Yes Basis set: Location doftats, NBO Properties of reactivity domains: Yes Framer, Coreon MCD Properties of reactivity domains: Yes Basis set: Location doftats, NBO Properties of reactivity domains: Yes Readuative: Location doftats, NBO Properties of reactivity domains: Yes Readuative: Magnetizability, Verdet Bord set: 0.000 Numerical quality: Olip (optical Rotatory Dispersion) Other: Exo: Charge Transport,, Polytophilic attack: Yes Outber: Conceptual DFT (FDL): Electrophilic attack: Yes QTAIM VinDevitvals Xts Charge change: 1.0	Beckstons (UV/MS), CD Domains (UV/MS), CD XX: functional Excelsions (UV/MS), CD Pranck-Condon Spectrum Properties of reactivity domains: Yes Basis set: Localized Orbitals, NBO Properties of reactivity domains: Yes Basis set: Localized Orbitals, NBO Properties of reactivity domains: Yes Frozen core: McD Properties of reactivity domains: Odd Numerical quality: Obj (Optical Rotatory Dispersion) Obter: Etot, Charge Transport, Polarizability Polarizability Polarizability Obter: Odd Odd ValueWasis XES Odd Odd Odd	Buckstons (U/Wh), CD Domains (FMO): XX functional Excelsions (D/Wh), CD Relativity: Grant Contrast, BDD Hyperpolarizability Localized Ontrast, BDD Localized Ontrast, BDD Grade Ontrast, BDD Magnetizability, Verset Border: 7.0 Fraces core: MCD Numerical quality: ODD (Optical Rotatory Dispersion) ODD (Optical Rotatory Dispersion) Other: Ext. Charge Transport, Polarizability VanDer/Waals XES XES	Beckstains (UV/MS), CD Domains (IV/MS), CD XC functional Excelsions (UV/MS), CD Relativity: Properties of reactivity domains: Yes Basis set: Location of thats, NBO Properties of reactivity domains: Yes Basis set: Location of thats, NBO Properties of reactivity domains: Yes Properties of reactivity domains: 0.00 Properties of reactivity domains: Yes Basis set: Location of thats, NBO Properties of reactivity domains: Yes Reductability: Verolet Bord er: 0.00 Numerical quality: Olip (optical Rotatory Dispersion) Other: Etd. Charge Transport,, Polarizability: 0.000 Other: Etd. Charge Transport,, Polarizability: Yes Outres: Yes Ordain: XES Yes Nucleophilic attack: Yes Ordain: XES Yes Nucleophilic attack: Yes Charge change: 1.0 1.0	Unrestricted:	ETS-NOCV					
XC functional: Prack-Condon Spectrum Image: Condon Spectrum Image: Condon Spectrum Relativity: Hyperplartzability Image: Condon Spectrum Image: Condon Spectrum Ugand Field DFT Localked Othetais, NBO Image: Condon Spectrum Image: Condon Spectrum Basis set: Localked Othetais, NBO Image: Condon Spectrum Image: Condon Spectrum Frazen core: Mod Mod Image: Condon Spectrum Image: Condon Spectrum Numerical quality: Ond (Optical Advatory Dispersion) Image: Conceptual DFT (FDL): Image: Conceptual DFT (FDL): PolytopErt Image: Conceptual DFT (FDL): Image: Conceptual DFT (FDL): PolytopErt Image: Conceptual DFT (FDL): Image: Conceptual DFT (FDL): VanDerWaals XES Image: Conceptual DFT (FDL): Image: Conceptual DFT (FDL):	XC functional: Franck-Condon Spectrum Image: Canonical mathematics Yes Relativity: Hyperplaintability Image: Canonical mathematics Yes Basis set: Localized Otherias, NBO Image: Canonical mathematics Image: Canonical mathematics Image: Canonical mathematics Fracen core: MCD Mon Mon Image: Canonical mathematics Image: Canonical mathematics Numerical quality: Othor (Optical Rotatory Dispersion) Image: Canonical mathematics Image: Canonical mathematics Image: Canonical mathematics Numerical quality: Othor (Optical Rotatory Dispersion) Image: Canonical mathematics Image: Canonical mathematics Image: Canonical mathematics Othor (Optical Rotatory Dispersion) Image: Canonical mathematics Image: Canonical mathematics Image: Canonical mathematics Othor (Optical Rotatory Dispersion) Image: Canonical mathematics Image: Canonical mathematics Image: Canonical mathematics Othor (Optical Rotatory Dispersion) Image: Canonical mathematics Image: Canonical mathematics Image: Canonical mathematics Numerical quality: Othor (Stat. Stat.	XC functional: Franck-Condon Spectrum Image: Condon Spectru	XC functional: Prack-Condon Spectrum Image: Condon Spectrum Image: Condon Spectrum Image: Condon Spectrum Relativity: Hyperplantzability Image: Condon Spectrum Image: Condon Spectrum Image: Condon Spectrum Basis set: Localked OthElais, NBO Image: Condon Spectrum Image: Condon Spectrum Image: Condon Spectrum Fracen core: Mod Mod Image: Condon Spectrum Image: Condon Spectrum Image: Condon Spectrum Numerical quality: OLD (Optical Rotatory Dispersion) Image: Conceptual DFT (FDL): Image: Conceptual DFT (FDL): Polytop: Polytop: T OTAIM VanDerWaals VanDerWaals Image: Conceptual DFT (FDL): XIS Spectrum Image: Conceptual DFT (FDL): Yes	XC functional: Franck-Condon Spectrum Image: Condon Spectru		Excitations (UV/VIs), CD Excited State Geometry		Domains (FMO):			
Relativity: GW Basis set: Localized Onblas, NBD Localized Onblas, NBD Spacing: Description 0.000 Prozen core: NCD Numerical quality: ORD (Optical floataory Dispersion) Orbit Collaboration Orbit Collaboration	Relativity: GW Basis set: Localzee Orbitati, NBO Magnetizabity, Verset Spacing: Prozen core: MCD Numerical quality: ORD (Optical Rotacy Dispersion) Other: Etocange Transport, Poartability, Vandet Other: ORD (Optical Rotacy Dispersion) Other: ORD (Optical Rotacy Dispersion) Other: Orbit State S	Relativity: GW GW Basis set: Ugand Field DFT Localized Orbitals, NBO Spacing: 0.1 Model calculation Model calculation Prozen core: MCD Numerical quality: ORD (Optical Rotatory Dispersion) Other: Eto: Conseptual DFT (FDL): Polarizability: Octopertial DFT (FDL): Polarizability: Octopertial DFT (FDL): Polarizability: Yes VanDerWaals XES	Relativity: GW Ligand Field DFT Ugand Field DFT Basis set: Localzed Onblas, NBD Moderatability, Verdet Image: Control of the con	Relativity: GW Basis set: Localzee Orbitati, NBO Moderatizabity, Verset Image: Constraint of the set of the s	XC functional:	Franck-Condon Spectrum	•	Properties of reactivity domains:	Tes		
Hyperplaintability Upan Field DT Localized Onthals, NBO Border: Magnetizability, Verdet Border: Frozen core: McD Numerical quality: OnD (Optical Rotatory Dispersion) Other: 0.001 Other: 0.001 Other: 0.001 Other: 0.001 Other: 0.001 Other: 0.005	Hyperplaintability Spacing: 0.1 Bortr* Basis set: Muscretability, Verdet Borter: 7.0 Bortr* Prozen core: MCD Numerical quality: 0.00 Display: 0.00 Numerical quality: ODI Optical Rotatory Dispersion) O O Display: 0.005 Polartopert OTAIM O O O O VanderWaals VanderWaals Yes Nucleophilic attack: Yes XES Image: 1.0	Hyperplarizability Spacing: 0.1 Bort * Basis set: Magnetizability, Verdet 0.0 Bort * 0.0 Magnetizability, Verdet Magnetizability, Verdet 0.001 Bort * McD Numerical quality: 0.001 (Optical Rotatory Dispersion) 0.001 Other :: Etor, Charge Transport, Polity: 0.005 Polity: 0.005 0.005 Conceptual DFT (FDL): Electrophilic attack: Yes VanDerWaals XES Charge change: 1.0	Hyperplaintability Upan of Net DFT Localized Onthals, NBO Border: Mg Mo Numerical quality OrD (Optical Rotatory Dispersion) Other: Etc. OrD (Optical Rotatory Dispersion) Other * Other: Etc. Other: Etc. MR Other * Other: Etc. Other: Etc. Other: Etc. Other: Etc. Other: Etc. Other: Etc. Other: Yes Other: To	Hyperplaintability Spacing: 0.1 Bortr* Basis set: Muscretability, Verdet Borter: 7.0 Bortr* Prozen core: MCD NMR 0.01 Bort 0.01 Numerical quality: OID (Optical Rotatory Dispersion) 0 0 0.005 Other: Etc. Charge Transport, Polarizability 0.005 0.005 Polarizability OID (Optical Rotatory Dispersion) 0 0 0.005 Other: Etc. Charge Transport, Polarizability 0.005 0.005 Polarizability OID (Optical Rotatory Dispersion) 0 0 0.005 Other: Etc. Charge Transport, Polarizability Yes 0.005 VanDerWaals XES Conceptual DFT (FDL): Electrophilic attack: Yes XES XES 0.0 1.0 1.0	Relativity:	GW		Ensemble:	Canonical	•	
Basis set: Localized Orbitals, NBO Magnetizabity, Verset Imagnetizabity, Verset Im	Basis set: Localized Orbitals, NBD Magnetizability, Verset: Frozen core: MCD Numerical quality: ODI (Optical Notatory Dispersion) Other: Etor, Charge Transport, Polarizability VanDerWaalss XES Display: Other: Tor, Charge Transport, Polarizability VanDerWaalss XES Display:	Basis set: Localized Orbinals, NBD Magnetizability, Verset: Frozen core: MCD Numerical quality: Odi (Optical Rotatory Dispersion) Other: Etot, Charge Transport, Polarizability QTAIM Variability Verset: Polarizability Verset: Polarizability Verset: Polarizability Verset: Polarizability Verset:	Basis set: Localized Orbitals, NBO Magnetizabity, Verset Frozen core: MCD Numerical quality: ORD (Optical Rotatory Dispersion) ORD (Optical Rotatory	Basis set: Localized Orbitals, NBD Magnetizabity, Verset Frozen core: MCD Numerical quality: ODI (Optical Rotatory Dispersion) Other: Etol, Charge Transport, Putarizabitity QTAIM VanDerWaalss XES Display: Display: Display: Conceptual DFT (FDL): Electrophilic attack: Yes Charge change: 1.0 Display: Di		Hyperpolarizability	- T	Spacing:	0.1 Bohr *		
Magnetizability. Verdet Magnetizability. Verdet 0.001 Prozen core: MR 0.001 Numerical quality: 0.001 ORD (Optical Rotatory Dispersion) 0 Other: Education Polarizability Other: QTAM VanDerWaats XES 1.0	Magnetizability. Verdet MC 0.001 HCD MC 0.001 Numerical quality: 0.001 ORD (Optical Rotatory Dispersion) 0.005 Optical Rotatory Dispersion) 0.005 O	Magnetizability. Verdet Immediation 0.001 Frezen core: MMR 0.001 Numerical quartity: ORD (Optical Rotacy Dispersion) Immediation Other: Ext. Charge Transport, Polarizability Polarizability Order Core Yes OTAM YanDerWaais Yes XES Immediation Immediatics	Magnetizability. Verdet Image: Concentration of the imag	Magnetizability. Verdet MC HCD MC Numerical quality: 0.001 ORD (Optical Rotatory Dispersion) 0.005 ORD (TOPT 0.001 QTAIN VanDerWaats XES 1.0	Radis set-	Localized Orbitals, NBO		Border:	7.0 Bohr •		
Frozen core: MCD Numerical quality: ORD (Optical Rotatory Dispersion) ORD (Optical Rotatory Dispersion) ORD (Optical Rotatory Dispersion) Polarizability Polarizability POLTOPT Conceptual DFT (FDL): QTAIM VanDerWaats XES XES	Frozen cone: MCD Numerical quality: ORD (Cyclical hotatory Dispersion) Orbit Orbit Orbit Orbit OTAIN VanDerWaals XES 0.0	Frozen core: MCD NRR MCD 0.0 Numerical quality: ORD (Optical Rotatory Dispersion) Other: Etor. Charge Transport, Display: 0.0005 Polartizability Polartizability Conceptual DFT (FDL): Electrophilic attack: Yes VanDerWaals XES XES One of the second secon	Frozen core: MCD Numerical quality: ORD (Optical Rotatory Dispersion) ORD (Optical Rotatory Dispersion) Order (FDL): Polarizability Conceptual DFT (FDL): POLTOPT OTAM VanDerWaats XES	Frozen core: MCD Numerical quality: MRic Hotatory Dispersion) Orbit Educ Charge Transport, Pointrability Pointrability Conceptual DFT (FDL): Pointrability Electrophilic attack: YanDerWaals XES		Magnetizability, Verdet		Threshold:	0.001		
Numerical quality: Unit of Optical Rotatory Dispersion) Obto Optical Rotatory Dispersion) Obto Optical Rotatory Dispersion) Other: Etot. Charge Transport, Pol.TDDFT OTAIM VanDerWaalss XES	Numerical quality: OBD (Optical Rotatory Dispersion) Other: Etor. Charge Transport, OBD (Optical Rotatory Dispersion) Other: Etor. Charge Transport, OBD (Optical Rotatory Dispersion) Polarizability POLTODET OTAIH VanDer/Waals XES OBD (Optical Rotatory Dispersion) Other: Etor. Charge Transport, OBD (Optical Rotatory Dispersion) Other: Etor. Charge Transport, OBD (Optical Rotatory Dispersion) Other: Etor. Charge Transport, VanDer/Waals XES VanDer/Waals Yes	Numerical quality: OBD (Optical Rotatory Dispersion) Other: Etot. Charge Transport, OBD (Optical Rotatory Dispersion) Other: Etot. Charge Transport, Obd (Optical Rotatory Dispersion) Polarization Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Polarization Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Polarization Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Polarization Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Polarization Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Other Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Other Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Other Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Other Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Value Value Obd (Optical Rotatory Dispersion) Obd (Optical Rotatory Dispersion) Value	Numerical quality: Obj (Optical Rotatory Dispersion) Other: Etor. Charge Transport, Obj (Optical Rotatory Dispersion) Other: Etor. Charge Transport, Obj (Optical Rotatory Dispersion) Point Top Optical Rotatory Dispersion) Other: Etor. Charge Transport, Obj (Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Point Top Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Point Top Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Point Top Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Point Top Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Point Top Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) Obj (Optical Rotatory Dispersion) VanDerWaals XES Conceptual DFT (FDL): Electrophilic attack: Yes VanDerWaals XES Conceptual DFT (FDL): Electrophilic attack: Yes<	Numerical quality: Orbit Optical Rotatory Dispersion) Other Etor. Charge Transport, Polarizability POLTDDFT OTAIN VanDerWaals XES	Frozen core:	MCD		Radius:	0.0		
Other, Edd. Charge Transport, Polarizability OCTDOFT QTAIM VanDerWalss XES Charge change: 1.0	Other: Etd: Charge Transport, Polartability QCTDOFT QTAIM VunDerWalais XES Charge change: 1.0	Other: Etd. Charge Transport, Pokrtxability QCIDDET QTAIM VanDerWaals XES Conceptual DFT (FDL): Electrophilic attack: Yes Nucleophilic attack: Yes Charge change: 1.0	Other: Edd. Charge Transport, Pointzability Pointzability Conceptual DFT (FDL): QTAIM Electrophilic attack: Yes Nucleophilic attack: Yes Charge change: 1.0	Other: Etd. Charge Transport, Pokrtxability POLTDEFT QTAIM VanDerWaals XES Charge change: 1.0 Conceptual DFT (FDL): Electrophilic attack: Yes Nucleophilic attack: Yes Charge change: 1.0	Numerical quality:	ORD (Optical Rotatory Dispersion)		Display:	0.005		
Polarizability POLTDOFT QTAM VanDerWaals XES INCLOSED Electrophilic attack: Yes VanDerWaals Charge change: 1.0	Polarizability Polarizability QTAIM VanDerWaals XES	Polarizability Polarizability QTAM QTAM VanDerWaals XES Charge change: 1.0	Polarizability Polarizability QTAM VanDerWaals XES Polarizability Polarizability Polarizability Electrophilic attack: Yes Nucleophilic attack: Yes Charge change: 1.0	Polarizability Polarizability QTAIM VanDerWaals XES Charge change: 1.0		Other: Etot, Charge Transport,		6			
QTAIL Percucipantic attack: Pesc QTAIL VanDerWaals Yes XES Charge change: 1.0	QTAM Nucleophilic attack: 1 Hes QTAM Nucleophilic attack: Yes XaDerWaals Charge change: 1.0	QTAM VanDerWaats YanDerWaats XES	QTAIL Percucipabilic attack: Pes QTAIL VanDerWaals XES	QTAIM VanDerWaals XES Yes		Polarizability		Conceptual DFT (FDL):	- X		
VanDerWaals XES Charge change: 1.0	VanDerWaals XES Charge change: 1.0	VanDerWaals XES Charge change: 1.0	VanDerWaals XES 1.0	VanDerWaals XES Charge change: 10		OTAIM		Nucleophilic attack:	Ver		
15	755	755				VanDerWaals		Charge change:	1.0		
						XES		enarge enarge.	1.0		

1.1 Global descriptors

1.1.1 Global electrophilicity

- 1. Optimise the geometry of the HCOX carbonyl derivatives with X = H, CH₃, Cl, OCH₃, at the BLYP/DZP level.
- 2. Extract the energy of the HOMO and LUMO for all these molecules, and calculate their electrophilicity index ($\omega = \mu^2/2\eta$). Check that the values you computed match those computed by ADF. How do these molecule order with respect to ω ? Does this meet your expectations?

1.1.2 Diels Alder reactions

Diels Alder cycloaddition reactions can usually be divided in two classes, depending on the nature of the substituting groups on the diene and dienophile. In the so-called *normal electronic demand*, the diene can be categorised as nucleophilic, and the reaction starts by a formal electron transfer from the diene to the dienophile.¹ In the case of the *inverse electronic demand*, the electron transfers are reversed: formally, electrons first flow from the dienophile to the diene.

¹Although a back transfer will occur at some point to allow the formation of both C-C bonds.

Figure 1: Diels Alder reaction with substitution on the diene and dienophile by electron accepting (A) or donating (D) groups.

We propose in this exercise to show that a simple calculation of chemical potential allows to evaluate the type of electronic demand two Diels-Alder reagents are likely to follow.

- 1. Optimise the geometries of a butadiene molecule substituted by an electron donating group (for instance 1-aminobutadiene), at the BLYP double-zeta level of theory, then evaluate its chemical potential in the FMO approximation.
- 2. Run the same calculation in the case of an accepting group (for instance 1-cyanobutadiene).
- 3. Run similar calculations in the case of an ethylene molecule, with the same kind of substitutions.
- 4. Do the results match your expectations?

1.2 Local descriptors

1.2.1 Qualitative approaches

- 1. Optimise the geometry of an ethylene molecule, at a BLYP/double-zeta level of theory. Then, run a single point calculation on the optimised geometry using the same functional, with a triple-zeta + polarisation basis set. Open the AMS View panel. In the "Fields" section, modify the grid quality to medium. Then, still in the "Fields" section, select "Calculated". In the banner that should appear at the bottom of the window, click on the first instance of "Select Field"; click "Orbitals (occupied)", and select the HOMO. Do the same thing in the second "Select Field" menu, and change the "-" option in the middle pane by "*". This computes the HOMO density (FMO approximation of the f^- Fukui function). To represent this field as an isosurface, click on "Add" (top banner) and select "Isosurface with phase". In the "Select Field" menu, click on "Other" and select the Field you just computed. You may change the default isovalue to 0.01 a.u. Does the result meet your expectations?
- 2. Do the same operations for the f^+ function (LUMO density). Same question.
- 3. Run another single point calculation, at the same level of theory, but additionally asking for the computation of CDFT descriptors in the finite difference scheme (FDL). Once these calculations are done, open the View menu. Change the grid quality to medium, and add

an isosurface with phase. In the Select Field menu, click on the second "Properties" pane, and select "Fukui minus". A pop-up window should open asking you to provide the data file for the anion single point. Selecting it triggers the computation of f^- in the FDL. Represent the 0.01 isosurface. What differences do you notice?

- 4. Same question for the f^+ function.
- 5. Using the same menus, you can also ask for the graphical representation of the Dual descriptor, both in FMO approximation and FDL. Represent both and compare them.
- 6. The DD is a powerful tool, highlight in a single shot places that are likely to cede away electrons (basis Lewis sites) and those likely to gain (acidic Lewis sites). It noticeably allows to properly characterise ambiphilic species, such as carbenes. To illustrate this, optimise the structure of the linear fluoro zinc dimethylcarbene $\text{FZnC}(\text{CH}_3)_2^+$, at the PW91/double-zeta level of theory. Then conduct a single point calculation with the same functional, using a polarised triple-zeta basis set (and no frozen core). Ask for the calculation of C-DFT descriptors in the FDL limit. Represent the DD in the FDL approximation. Are the results in line with your expectations?

1.2.2 Quantitative approaches

Figure 2: Structures and experimental yields observed for a series of reaction between a model nucleophile and various electrophiles, under acidic catalysis.

1. We provide in Figure 2 the structures and experimental yields observed in a series of experiments involving electrophiles (here aldehydes) reacting with the same nucleophile, under an acidic catalysis. Experimental evidences were brought forward that the first reaction step, that is the nucleophilic addition on the electrophile, is the rate limiting step, hence dictates the reactivity (yields). DFT reaction profile calculations furthermore showed protonation of the carbonyl function occurs when moving from the reagent to the first transition state. Altogether, this leads to propose that activation energies (hence, reactivity) could be linked to the properties of the protonated electrophiles, here likely electrophilicity.

Optimise the structures of all the protonated electrophiles in Figure 2, at a GGA/DZP level of theory. Then, conduct a CDFT analysis in the finite difference limit, using the hybrid B3LYP functional but with a TZP basis set. Extract the global electrophilicity

 ω and the local electroaccepting power, computed using the QTAIM partitioning.² Your results should show a decent correlation between the experimental yields and the local electrophilicity on the carbonyl carbon atom, but not with the global electrophilicity.

2. For the curious ones: using the tools we saw in the previous subsection, you can plot the isosurface of local electroaccepting power and compare it to the Dual Descriptor. As you may notice, the results differ; $\Delta \rho_{elec}$ emphasize electrophilic domains, while the DD (by construction) puts electrophilic and nucleophilic domains on the same foot.

1.3 A word of caution

In the previous examples we saw how descriptors can be computed and used to get a more quantitative insight on chemical properties. This is particularly true of the FDL versions. However the need to compute the associated ions can be problematic in some cases:

- the spin multiplicities of the ions can be non obvious, especially if a metal center is present;
- the electronic state of the ions can in fact be degenerate, and single reference methods are thus expected to fail;
- it is not always possible to attach an additional electron to the molecule, so the anion state cannot be computed (or is physically irrelevant).

This last point can be tricky to notice at first: because the basis sets are of finite size, it is sometimes possible to converge a numerical solution of the Kohn-Sham equations, with a nonbound electron. No error will be raised by the computer but the computed quantities will have no sense. We propose to show this on a simple example: methylfuran.

Optimise the geometry of 2-methylfuran, at the BLYP/DZ level. Then ask for a FDL-CDFT calculation at the BLYP/TZP level. In principle no error arises, but if you look at the right hand-side chemical potential μ^+ (which is equal to the electron affinity) you may note it is positive: the anion should spontaneously release an electron. The problem of the electronic state is also obvious by the aspect of the f^+ function: at 0.03 a.u., no surface is produced, and lowering the isovalue to 0.001 a.u. clearly shows the electron is mostly located outside of the molecular volume.

1.4 Non-local descriptors - ADF only

- 1. Optimise the structure of the butadiene molecule, at a GGA/DZP level of theory. Then run a single point calculation with the same functional and a TZP basis set, asking for a FMO CDFT analysis (Analysis level: full).
- 2. Run the same calculations for the n-butane molecule.
- 3. Search for the Linear Response Function (LRF) interatomic matrices in the outputs. Can you understand the differences and similarities in the $\chi(C_i, C_j)$ elements? It can be useful to draw resonance structures (remind the LRF translates the response of electron density at an atom C_i when the potential is changed on another atom C_j).

²Caution: while preparing these exercises we noticed a slight issue with the implementation of the QTAIM condensation in ADF: ordering of atom is done following ADF internal numbering, but the assignation of symbols is bogus. To find the correct numbering, in the View Panel, select Atom Info.

4. Optimise the structure of vinylbutadiene (also called [3]dendralene, see structure below) at a GGA/DZ level of theory, and then compute the LRF matrix at the GGA/TZP level. Dendralenes are molecules known to present so-called "cross-conjugation": they present three π electron systems that are only pair-wise conjugated (no full conjugation). Is this visible in the LRF matrix?

5. By construction, the LRF integral over one set of coordinates is zero. This means that the sum of all LRF matrix elements for a given atoms are zero. This then further implies that the diagonal elements already bear a lot of meaning: they translate how much of electron density a given site is likely to spread away under a perturbation in the external potential on this site. Said otherwise, $\chi(X, X)$ allows to assess the polarisability of atom X, which can be instrumental in reactivity (for any process being usually explained with mesomeric forms, for instance). Here we propose to evaluate this in the case of electrophilic aromatic substitution. Optimise the geometry of thiophene at a GGA/DZP level of theory, and then compute the LRF at GGA/TZP level. Extract the diagonal LRF elements for the carbon atoms. Experimentally, SEAr occurs principally at the α position with respect to sulfur. Are your computed values in line with this result?

2 Exercises with Gaussian/GaussView and TopChem

TopChem can compute several CDFT descriptors from a wavefunction file (.wfn or .wfx) produced by Gaussian. To produce the wavefunction file : (1) add output=wfx in the route section of the Gaussian input file, (2) don't forget to give a **name for your .wfx file** after the blank line following the molecule specifications.

By default, only occupied orbitals are printed out in the wavefunction file. To include some virtual orbitals, add iop(99/18=n) in the route section (n being the number of virtual orbitals included in the .wfx file. For example, you can choose n=1 to include only the LUMO).

Quick start command line :

• To compute global descriptors only :

topchem2 wfx:filename.wfx function:fwv output:filename.top proc:2

- To visualize local descriptors :
 - topchem2 wfx:filename.wfx function:fp output:filename_fp.top proc:2 for the f^+ Fukui function

topchem2 wfx:filename.wfx function:fm output:filename_fm.top proc:2 for the f^- Fukui function

topchem2 wfx:filename.wfx function:dld output:filename_dd.top proc:2 vmd for the Δf dual descriptor, and then vmd -e file.vmd to visualize the dual descriptor with VMD

• To condense local descriptors on atoms using the QTAIM partition :

topchem2 wfx:filename.wfx function:rho fukui:XX proc:2 with XX=fp, fm or dd depending on the function you want to condense (XX=fp for f^+ , XX=fm for f^- , XX=dd for Δf ,)

2.1 Global descriptors

2.1.1 Global electrophilicity

- 1. Optimise the geometry of the HCOX carbonyl derivatives with X = H, CH₃, Cl, OCH₃, at the BLYP/6-31G level.
- 2. Extract the energy of the HOMO and LUMO for all these molecules, and calculate their electrophilicity index ($\omega = \mu^2/2\eta$). Check that the values you computed match those computed by TopChem. How do these molecule order with respect to ω ? Does this meet your expectations?

2.1.2 Diels Alder reactions

Diels Alder cycloaddition reactions can usually be divided in two classes, depending on the nature of the substituting groups on the diene and dienophile. In the so-called *normal electronic demand*, the diene can be categorised as nucleophilic, and the reaction starts by a formal electron transfer from the diene to the dienophile.³ In the case of the *inverse electronic demand*, the electron transfers are reversed: formally, electrons first flow from the dienophile to the diene.

³Although a back transfer will occur at some point to allow the formation of both C-C bonds.

We propose in this exercise to show that a simple calculation of chemical potential allows to evaluate the type of electronic demand two Diels-Alder reagents are likely to follow.

- 1. Optimise the geometries of a but adiene molecule substituted by an electron donating group (for instance 1-a minobutadiene), at the BLYP 6-31G level of theory, check that the frontier orbital are the expected π orbitals, then evaluate its chemical potential in the FMO approximation.
- 2. Run the same calculation in the case of an accepting group (for instance 1-cyanobutadiene).
- 3. Run similar calculations in the case of an ethylene molecule, with the same kind of substitutions.
- 4. Do the results match your expectations?

2.2 Local descriptors

2.2.1 Qualitative approaches

Optimise the geometry of ethylene at the BLYP/6-31+G(d) level. Then, conduct a single point calculation using the same functional with 6-311G(d), asking for a chk file and for a wfx file.

The dual descriptor - FMO approximation

Using Gaussian only

[Command line version ; see below for the graphical approach using GaussView]

1. Convert the chk file to a formatted fchk one, using the following command:

formchk filename.chk filename.fchk

2. Then, using the **cubegen** utility, build a cube file for the HOMO and LUMO, using the following commands:

cubegen 1 MO=LUMO filename.fchk filenameLU.cub -2 h cubegen 1 MO=HOMO filename.fchk filenameHO.cub -1 h filenameLU.cub

(refer to the online manual for the explication of each keyword, http://gaussian.com/ cubegen/).

3. Once you obtain both files, use the cubman utility to calculate the electron density associated with both orbitals, that is, the square of both HOMO and LUMO: in the terminal, type cubman, then type 'SQ' (square of the cube). A filename will be asked. Once provided, answer 'y' (formatted cube file). A second filename will be asked (for the output). We suggest you to simply add SQ at the original filename. Then answer 'y' again (output a formatted file). After a while, the calculation is complete, and you can proceed to the second MO. 4. Then, use cubman to calculate the difference between the LUMO and HOMO electron densities (FMO approximation of the DD): type cubman, then 'SU'. Provide the filename for the LUMO density, 'y' (formatted), the filename for the HOMO density, 'y', the filename for the output, 'y'.

[Graphical approach using GaussView]

The previous operations can alternatively be piloted graphically by GaussView.

- 1. Open the chk file⁴,
- 2. Go to Results, Surfaces/Contours.
- 3. In the pop-up window, click on "Cube Actions", and select New Cube. This opens a new window.
- 4. Change "HOMO" to "HOMO,LUMO" so that both are computed. When the fields are ready, two cubes appear in the first window.
- 5. Click again on "Cube Actions", "New Cube". Change the type to "Square a Cube", and select the first MO. Clicking on OK will produce the associated MO density. Do this for both MOs.
- 6. Plot the obtained Fukui functions (isosurface at 0.01 a.u.). Do the results meet your expectations?
- 7. Compute the difference between the LUMO and HOMO densities, and plot the 0.001 a.u. isosurface. Are the results in agreement with the previous ones?

Using Topchem

Use Topchem to compute the f^+ , f^- and Δf function, in the FMO approximation, from the .wfx file created by Gaussian for the ethylene molecule. Does this match the previous calculations ?

The dual descriptor - Finite differences approximation

- (a) Perform two single point calculations using the optimised geometry, with the addition and subtraction of one electron (check the spin multiplicity!). Save the chk file in each case.
- (b) Using either cubegen or GaussView, build the cube files for the electron densities of the anionic, cationic and neutral forms. Then, either use cubman or GaussView to compute the DD in the Finite difference approximation:

$$\Delta f(\mathbf{r}) = \rho_{N+1}(\mathbf{r}) + \rho_{N-1}(\mathbf{r}) - 2\rho_N(\mathbf{r})$$

Represent it as an isosurface. Does this match the previous calculations?

Optimise the structure of the linear fluoro dimethylcarbene zinc complex $\text{FZnC(CH}_3)_2^+$, at the PW91PW91/6-31G(d) level of theory. Then run three single point calculations at the PW91PW91/6-311G(d) level of theory, for the neutral, anionic and cationic forms. Compute the DD in the FDL, and represents it as a 0.001 a.u. isosurface. Do the result comply with your expectations?

 $^{^{4}}$ Note this only works if the chk file was produced on a computer with the same architecture; in the general case it is advised to first format it into a fchk file.

2.2.2 Diels Alder and charge transfer - Gaussian only

In 2013, an excited state expansion of the dual descriptor was proposed (PCCP 2013, 15, 14465-14475). In a nutshell, the idea is to develop the DD as a sum of electron density reorganisation under excitation,

$$\Delta f(\mathbf{r}) = \sum_{i} \alpha_i \left(\rho_i(\mathbf{r}) - \rho_0(\mathbf{r}) \right)$$

with *i* the index of the excited state (0 meaning ground state). Although the analytical formula for the α weights is unknown, it is assumed they decrease with the excited state energy: the higher the ES, the less likely it is to contribute to the reactivity in the ground state.

In this exercise, we propose to revisit a concept that was then developped in a further publication (PCCP 2015, 17, 9359-9368): use one of the first electron density reorganisation, also coined first state-specific dual descriptors, to probe reactivity in a pre-reacting complex.

(a) Compute the first 10 excited states⁵ for the following two geometries (xyz files should also be present on your computers), which correspond to the first geometry in an IRC file for the [4+2] Diels Alder reaction between cyanobutadiene and aminoethylene on one hand, cyanoethylene and aminobutadiene on the other hand. To do this, use the following keywords:

```
# M062X 6-31G(d,p) td=(nstates=10,root=1) density=current
```

and ask for a chk file. The option root=1, in addition to density=current, will allow to compute the 1st excited state electron density.

(b) Format the checkpoint file with formchk, then build two cube files per fchk file, one for the excited state density,

```
cubegen 1 Density=CI [filename].fchk [filename]CI.cub -2 h
```

the other for the ground state density,

```
cubegen 1 Density=SCF [filename].fchk [filename]SCF.cub -1 h [filename]CI.cub
```

Note here that it is advised to read the grid details in the excited state density file: excited state densities usually spread further away from the molecule than the SCF density, and cubegen default grid for both files may be different.

- (c) Build a cube file corresponding to the first SSDD using cubman (substract), for each molecule. Visualise the 0.004 a.u. isosurfaces.
- (d) Describe the electron density movement in both case: which reagent gives away electron density? Which gains? Does it match your expectations?

The first intermolecular SSDD indeed allows to map the easiest electron transfer between two reagents.

⁵There are cases for which the first excited state is not chemically relevant - for instance, involving only one reagent -, so in general it is better to consider a handful of excitations. If the electron density reorganisation appears uninteresting, then study the decomposition of the excited states wavefunctions over MOs to identify the adequate state to study. Then, re-run the calculation by modifying the **root** keyword.

Geometries :

Aminoethylene +	⊢ cyanobutadiene		
С	-1.42287300	-1.61016700	0.27043100
С	-0.31947000	-1.93053600	0.95540300
С	-1.84375800	1.49752300	0.83716700
Н	-2.37827000	-1.51152200	0.78130600
С	1.02082600	0.81011200	0.32205900
Н	0.64063600	-2.05649700	0.46319400
Н	-0.37266200	-2.13683100	2.01663500
С	-1.18148700	1.75849600	-0.29485400
Н	-1.42748200	0.85010400	1.60295000
Н	-2.83014800	1.91112600	1.01656200
C	0.15674100	1.25003800	-0.60661000
Н	0.78825600	0.85461400	1.38083600
Н	-1.65306000	2.37153700	-1.05982300
Н	0.45626000	1.23116900	-1.65199200
C	2.28873400	0.23788400	-0.01770000
N	3.31078700	-0.24750800	-0.26617600
N	-1.50853000	-1.43828400	-1.10427300
Н	-0.61258800	-1.34232300	-1.56579300
Н	-2.15883600	-0.72141400	-1.39622700
Cyanoethylene +	⊦ aminobutadiene		
С	1.10294700	-2.03910500	-0.15156300
С	-0.13604700	-1.94194300	-0.63410100
С	2.56520500	0.79472600	-0.32921500
Н	1.92086100	-2.35843100	-0.78720100
Н	1.33277400	-1.79065200	0.87763800
С	-0.37301700	1.56384500	-0.47066900
Н	-0.37231300	-2.17487300	-1.66718300
С	1.77295100	1.16516700	0.68628900
Н	2.15121900	0.49518900	-1.28838800
Н	3.64535500	0.79677800	-0.23423800
С	0.31850100	1.26681100	0.64719900
Н	0.16636000	1.81902400	-1.38108000
Н	2.24157700	1.40092000	1.64158800
Н	-0.22936200	1.10539200	1.57311700
С	-1.24201600	-1.52443300	0.18221400
N	-2.15522400	-1.19184900	0.81255800
N	-1.74406400	1.65920800	-0.56195100
Н	-2.26552000	1.11004100	0.11040600
Н	-2.13374300	1.62415300	-1.49024000

2.2.3 Quantitative analysis

(a) We provide in Figure 2 the structures and experimental yields observed in a series of experiments involving electrophiles (here aldehydes) reacting with the same nucleophile, under an acidic catalysis. Experimental evidences were brought forward

that the first reaction step, that is the nucleophilic addition on the electrophile, is the rate limiting step, hence dictates the reactivity (yields). DFT reaction profile calculations furthermore showed protonation of the carbonyl function occurs when moving from the reagent to the first transition state. Altogether, this leads to propose that activation energies (hence, reactivity) could be linked to the properties of the protonated electrophiles, here likely electrophilicity.

Optimise the structures of all the protonated electrophiles in Figure 2, at BLYP/6-31G(d) level of theory. Then, conduct a CDFT analysis in the finite difference limit, using the same functional but with the 6-311G(d) basis set. For these calculations, ask for the computation of Hirshfeld atomic charges. Extract the SCF energies and the Hirshfeld atomic charges from all output files. They can be found after "Hirshfeld charges" (Q-H column). The electroaccepting power can be computed for each atom X using

$$\Delta \rho_{elec}(X) = -\left(\frac{\mu}{\eta}\right) f^+(X) + \frac{1}{2} \left(\frac{\mu}{\eta}\right)^2 \left(f^+(X) - f^-(X)\right),\tag{1}$$

with

$$\mu = \frac{1}{2} \left(E(N+1) - E(N-1) \right), \quad \eta = E(N+1) + E(N-1) - 2E(N) \tag{2}$$

$$f^{+}(X) = q_{N}(X) - q_{N+1}(X), \quad f^{-}(X) = q_{N-1}(X) - q_{N}(X)$$
(3)

Your results should show a decent correlation between the experimental yields and the local electrophilicity on the carbonyl carbon atom, but not with the global electrophilicity.

(b) For the curious ones: using the tools we saw in the previous subsection, you can plot the isosurface of local electroaccepting power and compare it to the Dual Descriptor (if you asked for chk files). As you may notice, the results differ; $\Delta \rho_{elec}$ emphasize electrophilic domains, while the DD (by construction) puts electrophilic and nucleophilic domains on the same foot.

Practical Work with TopChem2: Summary of the main commands

TopChem2 is a comprehensive, standalone program that offers advanced quantum chemical topology studies of various properties, including the Electron Localization Function (ELF), the electron density (QTAIM), the Molecular ElectroStatic Potential (MESP), the Non Covalent Interactions Index (NCI). It can also compute some reactivity descriptors derived from Conceptual DFT. The input files can be either wfn/wfx Gaussian wavefunction files or cube volumetric data files (.cube files). It works in command-line.

See details, download and video tutotials on

http://www.lct.jussieu.fr/pagesperso/pilme/topchempage.html

The command-line of TopChem2 requires different arguments, some of which are mandatory while others are optional.

Mandatory Arguments:

✓ input files:

wfn/wfx:[string] input wfn/wfx gaussian file
input:[string] input volumetric cube data file

✓ *function*:[string]

rho (electron density)
elf (electron localization function)
cvb (core-valence bifurcation index)
mep (molecular electrostatic potential)
nci (non covalent interactions index)
fwv (global descriptors)/ dld (dual descriptor)/fm (fukui f)/fp (fukui f*)]

Some optional arguments:

- *output*:[string] main results are provided in this output [string]
- *cp*:[y/n/o] y(enabled)/n(disabled) the search of critical points. "o" enables the search of critical points but both basin analysis and populations will be disabled.
- *th_cp*:[real] Below this threshold, all found critical points are dismissed.
- *atom_dist:*[real] Enforced minimal distance between non atomic critical points and atoms. <u>Default</u>: 0.3 bohr
- *contrib:*[y/n] QTAIM contributions to basin populations
- level:[rhf/uhf/rohf/nat] level of theory of the wfn file. <u>Default</u>: rhf.
- **pop**:[cov] Compute variance and covariance analysis. For QTAIM, gives both localization and delocalization indexes.

Working Session I

Command-line for performing a QTAIM analysis.

✓ To compute local descriptors, atomic charges and visualize critical points

> topchem2 wfn:your_file.wfn (wfx:your_file.wfx) function:rho cp:y proc:4 refine:f vmd
output:your_file.pop

✓ To compute QTAIM delocalization/localization Indices

> topchem2 wfn:your_file.wfn (wfx:your_file.wfx) function:rho cp:y proc:4 refine:f vmd
output:your_file.pop pop:cov

The optional argument **atom_dist**:0.2 can be used to enforce a minimal of 0.2 bohr distance between non atomic critical points and atoms. Your results are gathered in your_file.pop.

The **your_file_cprho.xyz** is also produced. It contains the Cartesian coordinates xyz (Å) of critical points and their numbering. molden your_file_rho_cprho.xyz

You can also obtain a direct visualisation of the shape of the electron density (0.1 e.bohr⁻³) and locations of critical points from the vmd file :

vmd -e your_file_rho.vmd
and activate Mouse/Label/atoms

Working Session II

Command-line for performing a ELF analysis.

✓ To compute ELF populations and visualize

> topchem2 wfn:your_file.wfn (wfx:your_file.wfx) function:elf proc:4 refine:f contrib:y vmd
output:your_file.pop

contrib: y # Enable the calculation of QTAIM contributions to ELF basins. Compute the bond polarity index (bpi).

✓ ELF core-valence bifurcation index (CVB) analysis

> topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:cvb proc:4 output:your_file.pop

Command-line for performing NCI 3D and 2D grids

> topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:nci proc:4 vmd output:your_file.pop you can change the visualization scale in the command-line with : lambda_min:[real] and lambda_max:[real]

Command-line for performing a MEP analysis

✓ To compute its (3, +3) critical points and visualize the MESP onto the electron density isosurface from wfn

> topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:mep proc:4 vmd output:your_file.pop

✓ To compute its (3, +3) critical points and visualize the MESP onto the electron density isosurface from cube files

> topchem2 input:your_file_mep.cube rho_file: your_file_rho.cube function:mep proc:4 vmd output: your_file.pop

All your numerical results are gathered in the **file.pop**. The **file_cp.xyz** files are also provided. It contains the Cartesian coordinates (Å) of critical points.

View 3D ELF, MEP or NCI domains with vmd : > vmd -e file.vmd

How to modify the VMD parameters for MEP and NCI domains

For MEP, To change the density isovalue: In the VMD main window, click on *Graphics*, then *Representations*. In the *Draw Style* tab, you can change the value in the *Isovalue* section.

For NCI, To change the RDG isovalue: In the VMD main window, click on *Graphics*, then *Representations*. In the *Draw Style* tab, you can change the value in the *Isovalue* section.

For both, to change the color scale: In the main window, click on *Graphics*, then *Representations*. In *the Trajectory* tab, you can change the two values in the **Color Scale Data Range** section.

View 2D NCI peaks with gnuplot

> gnuplot file.gnu

Working Session III

By default, only occupied orbitals are printed out in the wavefunction file.To include some virtual orbitals, add iop(99/18=n) in the route section (n being the number of virtual orbitals included in the your_file.wfx (your_file.wfn) file. For example, you can choose n=1 to include only the LUMO.

✓ To compute the global descriptors only

> topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:fwv proc:4 output:your_file.pop

✓ To visualize the local CDFT descriptors

- Dual Descriptor
- > topchem2 wfn:your_file.wfn (wfx:your_file.wfx) function:dld proc:4 vmd
 output:your_file.pop
- f⁺ Fukui function
- > topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:fp proc:4 vmd output:your_file.pop
- f Fukui function
- > topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:fm proc:4 vmd
 output:your_file.pop

✓ To condense local descriptors on atoms using the QTAIM partition

> topchem2 wfn:your_file.wfn (wfx: your_file.wfx) function:rho cp:y proc:4 refine:f
output:your_file.pop fukui:XX

XX depending on the function you want to condense : **XX=fp** for Fukui f⁺, **XX=fm** for Fukui f⁻, **XX=dd** for Dual Descriptor.