

Working Session II : ELF/MESP/NCI

https://moderm2023.sciencesconf.org/

Tuesday 5 sept.	Wednesday 6 sept.	
T. 42-43, basement	T. 42-43, basement	
QTAIM – IQA – REG	ELF, MESP & NCI	
Lunch Brasserie l'ardoise	Lunch Brasserie l'ardoise	
14h30-15h30 QTAIM – IQA - REG	Conceptual DFT	
16h -17h30 ELF, MESP &NCI	•	

Working Session II

We provide all files needed for the session:

✓ A copy of useful articles.

✓We have supplied all requisite wfn/wfx/cube input files for TopChem2.

✓Many exercises are provided with varying levels of difficulty. You can initially select exercises from the "Essential" list.

Working Session II

Starting with Topchem2 : Summary of main commands (page 32)

- 1. Open a linux terminal
- 2. Change the directory where the input files are located:

cd MoDerm/TP Exercices/Inputs MoDerm/SessionII

3. and start with the command-line,

topchem2

command-line,

> topchem2 wfn/wfx:your_file.wfn function:elf/cvb/nci vmd refine:f proc:4 output:your_file.pop

command-line, > topchem2 wfn/wfx:vour_file.wfn function:elf/cvb/nci vmd refine:f proc:4 output:your_file.pop

Gaussian wfn file (or wfx)

Working Session II: MESP analysis from cube files

command-line, > topchem2 input:your_file_mep.cube rho_file: your_file_rho.cube vmd function:mep proc:4 output:your_file.pop

Working Session II: MESP analysis from wfn/wfx

command-line,

topchem2 wfn/wfx:your_file.wfn function:mep vmd proc:4 output:your_file.pop

How to read/visualize your results ?

Results : > vi your_file .pop

	POPULATION	ANALYSIS S	ECTION	
um. 29.01%	assigned.			
Populations				
	==			
booin		202	~	
basui	νοι.	pop.	Ч•	
1 C(C2)	107.010	2.0672	3.9328	
2 C(01)	93.221	2.1228	5.8772	
3 C(F4)	401.173	2.1326	6.8674	
4 V(H3,F4)	189.111	1.3105	-0.3105	
5 V(C2)	393.549	2.55/1	-2.55/1	
6 V(01)	863.437	3.9723	-3.9723	
7 V(F4)	669.064	6.5752	-6.5752	
8 V(01,C2)	124.578	3.2567	-3.2567	
total population	23.994			

Visualize critical points locations : > molden your_file_elf_cpelf.xyz

Visualize 3D Isosurfaces :
> vmd -e your_file_elf_ebas.vmd

Visualize 2D NCI : > gnuplot your_file_nci.gnu

ELF Signature for charge-shift bond (CSB)*

- ✓ homonuclear bond X-X or common case for X = F or Cl
- ✓ depleted bond population, usually less than 1e
- ✓ large delocalization between the populations of adjacent V(X) basins

* Shaik S., Danovich D., Silvi B., Lauvergnat D., Hiberty P. Charge-Shift Bonding—A Class of Electron-Pair Bonds That Emerges from Valence Bond Theory and Is Supported by the Electron Localization Function Approach *Chem. Eur. J.* <u>21</u>, pp. 6358–6371 (**2005**)

ELF Core-Valence Bifurcation index (CVB) index *

The core-valence bifurcation index (CVB)* is designed to classify the A-H••• B hydrogen bonds :

* Fuster, F. and Silvi, B. Does the topological approach characterize the hydrogen bond ? *Th. Chem. Acc.* 104, p 13–21 (2000)

Practical calculation

Bond polarity index (bpi) : Gives the contributions of A and B QTAIM basins, respectively, to the total population of the V(A, B) disynaptic basin. bpi is always restricted to [-1, 1]

- ✓ Add to the command-line: contrib:y
- ✓ Directly given in the your_file.pop

Bond Polarity	Index (electrons)						
=======================================							
	1- 0	2- C					
1 C(C2)	0.000	1.000					
2 C(01)	1.000	0.000					
3 C(F4)	0.000	0.000					
4 V(H3,F4)	0.000	0.000					
5 V(C2)	-0.886	0.871					

Weigths of Lewis resonant structures (hands on Session II)

B3LYP/6-311+G(d,p) level of theory populations $\rightarrow N[V(C, O)] = 2.43e$; N[C(C)]=2.08e; N[C(O)]= 2.15e

C-O linear system
$$\rightarrow 8 w_{I} + 6 w_{II} = 2.43 + 2.08 + 2.15 w_{I} + w_{II} = 1$$

Solution:

 $w_{\parallel} = 0.33$ $w_{\parallel} = 0.67 \rightarrow$ strong contribution of the polarized structure C⁺ O⁻

NCI : Hands-on

- For several systems showing non covalent interactions :
 - trace s versus sign(λ₂)ρ (2D NCI plot);
 - look at **s isosurfaces** in the molecular space (**3D NCI plot**)
- Relate the shape / spatial extention of the NCI isosurface to the type of interaction (localized / delocalized character)
- Reveal the dual character (attractive / repulsive) of some interactions
- Confront QTAIM analysis to NCI analysis.
 - s spikes revealing the presence of an interaction do not necessarily goes to s = 0 (no QTAIM cp)
 - A single non covalent interaction can be associated with several QTAIM critical points

http://topchemweb.sorbonne-universite.fr/

- A free online implementation of the TopChem2 code
- PROAIMS wavefunction (wfn or wfx) file for input, limited to 12 atoms and 400 primitives
- Electron density, ELF and NCI functions are currently available
- Graphical interface to view your results and download all topchem2 results files (available 48 hours)