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1. Introduction: why do we need Quantum Chemistry? 

This document intends to present some of the most important concepts, basic properties and 

notations found in Quantum Chemistry (QC) and that will be extensively used in the more specific 

courses of this thematic school. This compendium is obviously very far from being comprehensive. As 

such, we refer the reader interested in deepening her/his knowledge on QC to the bibliographic 

references provided in the final section (please, note that neither such advanced knowledge nor 

mathematical details are requested for mastering the chemical analyses spanned by this formation). 

Quantum mechanics (QM) is up to now the only mainstream physical theory that can explain the 

formation of chemical bonds, a task that classical mechanics (CM) and electromagnetism (EM) theories 

cannot achieve by themselves. Indeed, these two last theories fail, for instance, in accounting for the 

attraction of two neutral hydrogen atoms to form the dihydrogen molecule. Besides, in EM, the 

Earnshaw’s theorem implies that a system of point charges cannot be maintained in a stable stationary 

equilibrium configuration solely by the electrostatic interaction, which may seem in apparent 

contradiction with matter stability that QM succeeds in explaining in a (up to now) unsurpassed way. 

This achievement was only possible by a paradigm shift that leads to statements that sometimes 

contradict the intuitive understanding one can have of allegedly simple physical or chemical processes, 

as epitomized by the Heisenberg’s uncertainty inequality that asserts that we cannot know both the 

position and speed of a particle with perfect accuracy. Fundamental notions in CM, such as trajectory, 

had to be abandoned, generating exciting epistemological issues we will not discuss here.  

 

2. Basics of Quantum Mechanics 

From an axiomatic point of view (unessential for our purposes), QM is based on several postulates, 

the primary one being that at any instant 𝑡 , the state of a pure quantum state is fully determined by a 

normalized vector in a suitable Hilbert space, notated |Ψ(𝑡)⟩ in Dirac’s notation. In practice, |Ψ(𝑡)⟩ is 

almost exclusively represented in QC by a complex-valued function, called wavefunction, whose 

variables are the spatial coordinates 𝑟𝑚⃗⃗⃗⃗  and the intrinsic spins 𝑠𝑚⃗⃗⃗⃗  ⃗ associated to each of the 𝑁 particles 

belonging to the studied system.1   

Gathering these variables into the 𝑥𝑚⃗⃗ ⃗⃗  ⃗ = (𝑟𝑚⃗⃗⃗⃗ , 𝑠𝑚⃗⃗⃗⃗  ⃗) generic ones, |Ψ(𝑡)⟩ will thus be represented by 

the Ψ({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }, 𝑡) function, whose time-evolution is governed by the celebrated Schrödinger equation 

(SE, 1926) that overlooks Schrödinger’s grave in the Alpbach’s cemetery in Austrian Tyrol: 

                                                           
1 An alternative, fully equivalent, sometimes found in physics, is the momentum representation. The two representations are 
linked by Fourier transforms. 
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𝑖ℏ
𝜕

𝜕𝑡
Ψ({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }1≤𝑚≤𝑁, 𝑡) = 𝐻̂Ψ({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }1≤𝑚≤𝑁, 𝑡),      (1) 

where 𝐻̂ is called the Hamiltonian, which will described more in detail below. The use of SE implies 

that relativistic effects have not to be taken into account, an assumption that can become arguable for 

chemical elements after the third period of the periodic table for which the velocity of the core 

electrons is not anymore negligible with respect to the speed of light.2 

It is fundamental to notice that only one function of several variables is needed, in strong contrast 

with a Newtonian description in which the same system would be described by a set of 𝑁 coupled 

differential equations, each of them describing the trajectory of each particle. To quote Feynman, “the 

effect of the entire History on the future of the universe could be obtained from a single gigantic 

wavefunction”.  

Mathematically, 𝐻̂ is an operator. This means that its action on a function will generate another 

function. More generally, in QM, every physical quantity 𝑃 that can be measured is associated to a 

dedicated operator 𝑃̂, called an observable which is linear: it transforms any linear combination of 

functions into the same linear combination of the function images (𝑃̂(𝜆𝑓 + 𝜇𝑔) = 𝜆𝑃̂𝑓 + 𝜇𝑃̂𝑔). 

Coming back to the SE, 𝐻̂ is actually nothing more than the observable corresponding to the total 

energy of the system. 

An important case (and the only one that we will discuss here) is the class of stationary 

Hamiltonians, 𝐻𝑠𝑡̂, that do not explicitly depend on the time variable (this assumption for instance 

excludes the cases of a molecule in interaction with an external oscillating electromagnetic wave), for 

which the wavefunction can be exactly separated into a function 𝐴 depending only on 𝑡 and a function 

𝜓 depending only on the  𝑥𝑚⃗⃗ ⃗⃗  ⃗  variables according to: 

 Ψ({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }, 𝑡) = 𝐴(𝑡) × 𝜓({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }1≤𝑚≤𝑛).       (2) 

The last function is solution of the so-called stationary SE (SSE): 

𝐻𝑠𝑡̂𝜓({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }) = 𝐸𝜓({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }1≤𝑚≤𝑛),       (3) 

where 𝐸 is a real number. From a mathematical point of view, 𝜓 is an eigenvector of the Hamiltonian 

operator.  It can also be shown that, for real chemical systems, the eigenvalue 𝐸 cannot be any number, 

but should belong to a precise countable set of allowed values, ℰ. This is the famous quantization of 

the total energy. Furthermore, it can be proven that ℰ admits a minimal value, 𝐸 
(0). This last one is 

called the ground state (GS) energy of the system, and the corresponding wavefunction is called the 

GS wavefunction, 𝜓(0). All other possible values for 𝐸 will correspond to excited states.  

                                                           
2 One should then shift towards the more intricate Dirac equation. 
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3. Basics of Quantum Chemistry 

3.1. The molecular Hamiltonian 

Up to now, these generalities are valid for any quantum system. We will now restrict our attention 

to chemical ones, consisting in 𝑛𝛼 nuclei of charge 𝑍𝛼𝑒 (where 𝑒 = 1.602 10-19 C is the elementary 

charge), with spatial coordinates 𝑟𝛼⃗⃗  ⃗ and in 𝑛𝑒 electrons (charge −𝑒) with coordinates 𝑟𝑖⃗⃗  (in other words, 

{𝑟𝑚⃗⃗⃗⃗  }1≤𝑚≤𝑁 = {{𝑟𝛼⃗⃗  ⃗ }1≤𝛼≤𝑛𝛼 , {𝑟𝑖⃗⃗  }1≤𝛼≤𝑛𝑒}).  

Most QC calculations are then based on a further approximation, the Born-Oppenheimer (BO) one, 

which can break down in case of light nuclei or if electronic states are closed in energy, but which 

reveal robust for main applications in organic chemistry where the error induced by the BO 

approximation is much lower than those stemming from the other QC computational parameters. BO 

separates nuclei and electrons roughly based on the fact that the first ones being heavier exhibit a 

much lower velocity. The molecular wavefunction is then approximated by the following ansatz: 

 𝜓({𝑥𝑚⃗⃗ ⃗⃗  ⃗ }1≤𝑚≤𝑛) = 𝜓𝑣({𝑥𝛼⃗⃗ ⃗⃗  }1≤𝛼≤𝑛𝛼) × 𝜓𝑒({𝑥𝑖⃗⃗  ⃗ }1≤𝑖≤𝑛𝑒; {𝑟𝛼⃗⃗  ⃗ }1≤𝛼≤𝑛𝛼),   (4) 

where the nuclear 𝜓𝑣 wavefunction describes rotational and vibrational effects, while the electronic 

wavefunction, 𝜓𝑒, is computed for each {𝑟𝛼⃗⃗  ⃗ }1≤𝛼≤𝑛𝛼 configuration (in other words, the coordinates of 

the nuclei are considered as fixed parameters to determine 𝜓𝑒)3 and is solution of the electronic SE: 

    𝐻𝑒
𝑠𝑡̂
 
𝜓𝑒
(𝑛)
({𝑥𝑖⃗⃗  ⃗ }1≤𝑖≤𝑛𝑒; {𝑟𝛼⃗⃗  ⃗ }1≤𝛼≤𝑛𝛼) = 𝐸𝑒

(𝑛)
× 𝜓𝑒

(𝑛)
({𝑥𝑖⃗⃗  ⃗ }1≤𝑖≤𝑛𝑒; {𝑟𝛼⃗⃗  ⃗ }1≤𝛼≤𝑛𝛼) 

,  (5) 

where 𝑛 = 0 corresponds to the electronic GS and 𝑛 ≥ 1 to the various electronic excited states. If 

one adds the electrostatic nuclei repulsion energy (given by Coulomb’s law and that is constant for a 

given electronic state within the BO approximation), one ends up this the GS molecular energy:4 

 𝐸𝑚𝑜𝑙
(0)

= 𝐸𝑒
(0)
+

𝑒2

4𝜋𝜀0
∑

𝑍𝛼𝑍𝛽

‖𝑟𝛼⃗⃗⃗⃗ −𝑟𝛽⃗⃗⃗⃗  ⃗‖
𝛼<𝛽 .       (6) 

Coming back to eq. 5, the electronic Hamiltonian 𝐻𝑒
𝑠𝑡̂  can be expressed as the sum of the electronic 

kinetic operator 𝑇𝑒̂ and the potential energy operator 𝑉̂. The first one involves the Laplacian operator 

with respect to all electronic position coordinates: 

 𝑇𝑒̂ = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2𝑛𝑒
𝑖=1 ,         (7) 

where ℏ = ℎ/(2𝜋) is the reduced Planck constant, 𝑚𝑒 the electron mass and (in Cartesian coordinates) 

∇𝑖
2𝑓 =

𝜕2𝑓

𝜕𝑥𝑖
2 +

𝜕2𝑓

𝜕𝑦𝑖
2 +

𝜕2𝑓

𝜕𝑧𝑖
2. The potential energy operator can be divided into two contributions, that 

                                                           
3 This does mean that nuclei cannot move: in a so-called BO molecular dynamics (BOMD) calculation, once 𝜓𝑒 has been 

determined, all forces, including those exerted by the electrons on the nuclei, can be computed, and the nuclei will then be 
displaced according to them, leading to another nuclei configuration on which a new 𝜓𝑒 will be determined. 
4 This is not the internal energy at 0K since zero-point vibrational contributions are missing. More generally, the calculation 

of thermodynamical contributions are outside the scope of this document. 



5 
 

corresponding to the attraction of each electron by each nucleus (𝑉𝑛𝑒̂) and the bielectronic repulsion 

(𝑉𝑒𝑒̂) between each atom pair, and whose expression directly follows from Coulomb’s law (𝑣𝑛𝑒 and 𝑣𝑒𝑒 

functions) translated in the language of operators (𝑉𝑛𝑒̂, 𝑉𝑒𝑒̂) in accordance with the correspondence 

principle: 

 𝑉̂ = −
𝑒2

4𝜋𝜀0
∑ ∑

𝑍𝛼

‖𝑟𝛼⃗⃗⃗⃗ −𝑟𝑖⃗⃗⃗  ‖

𝑛𝑒
𝑖=1

𝑛𝛼
𝛼=1

⏞              
×

𝑣𝑛𝑒({𝑟𝛼⃗⃗⃗⃗ },{𝑟𝑖⃗⃗⃗  })

⏟                
𝑉𝑛𝑒̂

+
𝑒2

4𝜋𝜀0
∑ ∑

1

‖𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗‖
 
𝑗>𝑖

𝑛𝑒−1
𝑖=1

⏞              
×

𝑣𝑒𝑒({𝑟𝑖⃗⃗⃗  })

⏟              
𝑉𝑒𝑒̂

,    (8) 

where the × symbol (generally omitted in the specialized literature) explicitly stresses the 

multiplicative nature of these operators (i.e. 𝑉𝑛𝑒̂𝜓𝑒 = 𝑉𝑛𝑒 × 𝜓𝑒). It is common practice in the QC 

literature to use atomic units (a.u.) in order to simplify such expressions. In this unit system, 𝑒 = ℏ =

𝑚𝑒 = 4𝜋𝜀0 = 1, and it will used exclusively in the following unless otherwise stated. The electronic 

Hamiltonian then reads: 

 𝐻𝑒
𝑠𝑡̂|
𝑎.𝑢.

= −
1

2
∑ ∇𝑖

2𝑛𝑒
𝑖=1 − ∑ ∑

𝑍𝛼

‖𝑟𝛼⃗⃗⃗⃗ −𝑟𝑖⃗⃗⃗  ‖

𝑛𝑒
𝑖=1

𝑛𝛼
𝛼=1 × +∑ ∑

1

‖𝑟𝑖⃗⃗⃗  −𝑟𝑗⃗⃗  ⃗‖

 
𝑗>𝑖

𝑛𝑒−1
𝑖=1 ×.     (9) 

Energies are then expressed in Hartree, the usual conversions factors being: 1 𝐸ℎ = 27.21 𝑒𝑉 =

627.51 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙 = 2625.5 𝑘𝐽/𝑚𝑜𝑙. 

It should be underlined that, as we are not dealing with magnetic properties and for the sake of 

simplicity, we have not included potential operators involving spins (for instance spin-orbit coupling) 

even if the presented methodology allows for integrating them into a straightforward way.  

The main goal of QC is to solve eq. 5. Unfortunately, it can be exactly done only for very few systems, 

so that approximation methods are needed. They can be roughly classified in two main families: 

WaveFunction Methods (WFMs) and Density Functional Theory (DFT). Among the most widespread 

WFMs, one finds Hartree-Fock (HF), Møller-Plesset (MP), Configuration Interaction (CI) and Coupled-

Cluster (CC) approaches. DFT will be the topic of a following section. 

3.2. Hartree-Fock approximation and the correlation energy problem 

All these methods take into account some constraints on the wavefunction. The first one is the 

normalization condition. Indeed, in the probabilistic interpretation (Born rule), the elementary 

probability to find at the same time 𝑡 electron 1 inside an infinitesimal volume 𝑑3𝑟1  centered at point 

𝑟1⃗⃗⃗  , electron 2 inside an infinitesimal volume 𝑑3𝑟2  centered at point 𝑟2⃗⃗  ⃗ and so on… is equal to (for the 

sake of clarity, spin variables have been not considered here and notations have been simplified) 

|𝜓𝑒(𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, … , 𝑟𝑛𝑒⃗⃗⃗⃗  ⃗ )|
2
𝑑3𝑟1𝑑

3𝑟2…𝑑
3𝑟𝑛𝑒. As the sum of all these probabilities should be equal to 1 when 

all possible space positions are considered,  

∫∫…∫|𝜓𝑒(𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, … , 𝑟𝑛𝑒⃗⃗⃗⃗  ⃗ )|
2
𝑑3𝑟1𝑑

3𝑟2…𝑑
3𝑟𝑛𝑒 = 1,      (10) 
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where all integrals extend over whole space. More precisely, in QM, only the square of the 

wavefunction has a physical meaning. As a consequence, dephasing 𝜓𝑒 by a constant real angle 𝜃  

(𝜓𝑒 → 𝜓𝑒 × 𝑒
𝑖𝜃) will lead to the same quantum state. 

The second important condition comes from the fact that all electrons are indistinguishable. This 

implies that if two particles are exchanged in the wavefunction, the electronic state should remain the 

same. In virtue of our previous remark, electron permutation can actually only generate dephasing. As 

electrons are half-integer–spin particles, the spin-statistics theorem gives that the dephasing is exactly 

equal to 𝜋. In other words, 𝜓𝑒 must be antisymmetric with respect to electron permutation (please 

note that electron spin variables here have to be taken into account), here illustrated on electrons 1 

and 2: 

 𝜓𝑒(𝑥2⃗⃗⃗⃗ , 𝑥1⃗⃗⃗⃗ , 𝑥3⃗⃗⃗⃗ , … , 𝑥𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗  ) = −𝜓𝑒(𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ , 𝑥3⃗⃗⃗⃗ , … , 𝑥𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗  ).     (11) 

As a first illustration, we now consider the electronic GS of the H2 molecule in its GS state as 

discussed in undergraduate courses. By convention, the eigenfunctions of the 𝑆𝑧̂ electronic spin 

operator5 are denoted 𝛼 (for the +1/2 eigenvalue in atomic units) and 𝛽 (for the −1/2 eigenvalue). 

More colloquially, 𝛼 corresponds to the “spin up” orientation and 𝛽 to the “spin down” one. In the 

molecular orbital (MO) formalism, two electrons occupy the (normalized) 𝜎𝑔 bonding MO, described 

by the real function 𝜎𝑔(𝑟 ) defined in the 3D-space, with opposite spins. At first sight, the corresponding 

molecular electronic wavefunction may read as a simple product, 𝜓𝑒(𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, 𝑠1, 𝑠2 ) =

𝜎𝑔(𝑟1⃗⃗⃗  )𝜎𝑔(𝑟2⃗⃗  ⃗)𝛼(1)𝛽(2), but this does not fulfil the antisymmetry condition. The antisymmetry is 

recovered if the spin contribution is actually replaced by 𝛼(1)𝛽(2) − 𝛼(2)𝛽(1). Interestingly, the 

obtained wavefunction can be conveniently put in a determinantal form according to: 

 𝜓𝑒(𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗, 𝑠1, 𝑠2 ) =
1

√2
|
𝜎𝑔(𝑟1⃗⃗⃗  )𝛼(1) 𝜎𝑔(𝑟1⃗⃗⃗  )𝛽(1)

𝜎𝑔(𝑟2⃗⃗  ⃗)𝛼(2) 𝜎𝑔(𝑟2⃗⃗  ⃗)𝛽(2)
|,      (12) 

where the 1/√2 prefactor is the so-called normalization constant.  

Such wavefunctions can be easily extended to the general case of 𝑛𝑒 electrons according to: 

 𝜓𝑒(𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ , 𝑥3⃗⃗⃗⃗ , … , 𝑥𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗  ) =
1

√𝑛𝑒!
|

𝜑1(𝑥1⃗⃗⃗⃗ ) … 𝜑𝑛𝑒(𝑥1⃗⃗⃗⃗ )

⋮ ⋱ ⋮
𝜑1(𝑥𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗ ) … 𝜑𝑛𝑒(𝑥𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗ )

|,    (13) 

where the 𝑛𝑒 𝜑𝑖  are called spin-molecular orbitals, and the wavefunction defined by eq. 13 a Slater 

determinant (SD). Finding the SD determinant that provides the lowest total energy (in other words, 

optimizing the {𝜑𝑖} set for that its energy is minimal) corresponds to a (unrestricted) Hartree-Fock (HF) 

calculation.6   

                                                           
5 which are also eigenfunctions of the 𝑆2 ̂ operator. 
6 Alternatively, the HF theory can be constructed as a mean-field approximation of the electronic potential. 
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However, while the HF wavefunction is correctly normalized and antisymmetric, it is never the exact 

electronic wavefunction for a molecule with more than one electron. It is thus inaccurate to state that 

the H2 molecule is in the (𝜎𝑔)² electronic configuration.7 This is only an approximation, whose error is 

measured by the so-called correlation energy (always negative, as a consequence of the so-called 

variational principle) defined by: 

 𝐸𝑒
𝑐𝑜𝑟𝑟 = 𝐸𝑒

𝑒𝑥𝑎𝑐𝑡 − 𝐸𝑒
𝐻𝐹.        (14) 

In the H2 case, 𝐸𝑒
𝑐𝑜𝑟𝑟 ≈ −0.04 𝐸ℎ ≈ −25 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙, which is not at all negligible with respect to H2 

bond energy (≈ 100 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙). In fact, standard MO approaches only provides a crude estimate of 

bonding in molecules. Of course, HF theory can be improved by post-HF methods. However, we will 

here focus on an alternative already mentioned, DFT, which is certainly the most used one to 

theoretically study real chemical systems, since it can now be routinetly applied to systems of 

hundreds of atoms. 

 

4. Density Functional Theory 

4.1. The electron density 

DFT starts from the observation that, due to the wavefunction antisymmetry, 𝜓𝑒 encodes 

redundant information, so that one can wonder whether a simpler function embodying only necessary 

information present in |𝜓𝑒|² could be sufficient to describe the electronic states. Such a condensation 

can be achieved by integration over some variables. The electron density (ED) is the prototype of such 

operation, where |𝜓𝑒|² is integrated other all electrons except one: 

𝑛(𝑟1⃗⃗⃗  ) = 𝑛𝑒 ∫∫…∫|𝜓𝑒(𝑥1⃗⃗⃗⃗ , 𝑥2⃗⃗⃗⃗ , … , 𝑥𝑛𝑒⃗⃗ ⃗⃗ ⃗⃗  )|
2
𝑑𝑠1𝑑

4𝑥2…𝑑
4𝑥𝑛𝑒.    (15) 

In eq. 15, only the spatial coordinates of electron 1 have been kept. Due to the electron 

indiscernibility, the same function will be fortunately obtained if integration has been instead 

performed on electrons 1, 2,…, 𝑛𝑒 − 1, keeping only the coordinates of electron 𝑛𝑒. At variance with 

the electronic wavefunction whose number of variables increases linearly with the system size (making 

it intractably huge even for relatively small molecules), ED is a 3D-function for any chemical system. It 

can thus be easily visualized.  

Moreover, it has a simple physical interpretation, as follows from its integrated values over whole 

space: 

 ∫𝑛(𝑟1⃗⃗⃗  ) 𝑑
3𝑟1 = 𝑛𝑒.         (16) 

                                                           
7 This is also true at the atomic level. Considering that the He atom is in its (1s)² configuration at the GS induces an error of 
more than 25 kcal/mol on the helium atom energy. 
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More precisely, the average number of electrons inside an infinitesimal volume 𝑑3𝑟1 centered at 

point 𝑟1⃗⃗⃗   equals 𝑛(𝑟1⃗⃗⃗  )𝑑
3𝑟1. ED thus counts the number of electrons per volume.8 Among the important 

ED properties are the following: for real chemical systems,  

- 𝑛 is strictly positive at any space point; 

- 𝑛 exhibits cusps at nuclear positions, whose slope depends on the nuclear charge (Kato’s 

theorem); 

- in non-periodic systems, 𝑛 is exponentially decreasing far from the nuclei, the asymptotic decay 

being controlled by the ionization potential of the system; 

- for atoms, 𝑛 is monotonic decreasing wit maximal values at nuclei; 

- 𝑛 can be experimentally measured by means of X-ray diffraction techniques: it can be directly 

obtained by Fourier-transform of the structure factor. 

This last property is particularly appealing since this is not the case of the wavefunction that cannot 

be experimentally accessed.  

4.2. The Hohenberg-Kohn theorems 

Henceforth, the electron density already presents attractive assets, but one can now wonder if it 

can also provide useful information on electronic state? The answer is given by the celebrated 

Hohenberg-Kohn (HK) theorems (1964) that are the pillars of DFT. In brief, the first of the two theorems 

(the second one being the variational version of the first) can be formulated as follows (we recall that, 

see eq. 8, 𝑣𝑛𝑒 is the potential generated by the nuclei, very often called external potential in the DFT 

community): 

“The ground-state density 𝑛(𝑟  ⃗) determines the potential 𝑣𝑛𝑒(𝑟  ⃗), which in turn determines the 

Hamiltonian, and thus everything about the many-body problem.”  

In summary, we can in principle determine any physicochemical property of the system from the 

sole electron density. Two caveats should be associated to this generalized statement: it is only valid 

for stationary states and restricted to the electronic GS. Extensions to excited states exist (these are 

the Runge-Gross theorems, foundations of Time-dependent DFT), but they will not be discussed here. 

We now introduce additional terminology. Very crudely speaking, a function maps a number to 

another number; an operator maps a function to another function; a functional will map a function to 

a number. Examples are given below: 

                                                           
8 When multiplied by the opposite elementary charge, one obtains the negative charge density 𝜌𝑒(𝑟1⃗⃗⃗  ) = −𝑒𝑛(𝑟1⃗⃗⃗  ). If the 
positive charge distribution carried by the nuclei, 𝜌𝑛𝑢𝑐(𝑟1⃗⃗⃗  ), is added, one gets the (total) charge density 𝜌 according to 
𝜌 (𝑟1⃗⃗⃗  ) = 𝜌𝑛𝑢𝑐(𝑟1⃗⃗⃗  ) − 𝑒𝑛(𝑟1⃗⃗⃗  ). It is this 𝜌 that, for instance, is used in the Maxwell’s equations governing the electromagnetic 

fields. It should be noticed that this is common practice not to distinguish between 𝑛 and −𝜌𝑒  in the DFT literature. 
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𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑥 ⟼ 𝑥2, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟: 𝑓(𝑥) ⟼ 𝑓′(𝑥), 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙: 𝑓(𝑥) ⟼ ∫ 𝑓′(𝑥)𝑑𝑥
∞

−∞
 .   (17) 

Using this vocabulary, one can thus conclude that the electronic ground state energy is a functional 

of the electron density, which can be notated by 𝐸𝑒
(0)
= 𝐸𝑒

(0)[𝑛]. This is also true for any component 

of 𝐸𝑒
(0)

, such as the total electronic kinetic energy 𝑇 and the bielectronic repulsion energy 𝑉𝑒𝑒, so that: 

 𝐸𝑒
(0)
= 𝑇[𝑛] + 𝑉𝑒𝑒[𝑛] + ∫𝑛(𝑟  ⃗)𝑣𝑛𝑒(𝑟  ⃗)𝑑

3𝑟,      (18)   

where the last integral is the electron density functional for the energy of attraction of the electrons 

by nuclei. Conversely, the 𝑇[𝑛] + 𝑉𝑒𝑒[𝑛] sum does not depend on 𝑣𝑛𝑒; for this reason, it is coined the 

HK “universal functional” generally denoted 𝐹𝐻𝐾. Unfortunately, while HK theorems prove that 𝐹𝐻𝐾 

exists, they do not provide any analytical formula for it. It is precisely the difficulty to find accurate 

approximations for this term that led Kohn and Sham to reformulate DFT within the so-called KS 

framework. 

4.3. The Kohn-Sham approach 

To this aim, Kohn and Sham introduced one year later a fictitious non-interacting electronic system 

that gives the same electron density as that of the interacting system of interest.9 As electrons do not 

interact in this KS system, its wavefunction is exactly given by a Slater determinant involving the so-

called KS orbitals (𝜓𝑒
𝐾𝑆 = 𝑑𝑒𝑡({𝜑𝑖

𝐾𝑆})
 
, while differing from the exact electronic wavefunction. The 

electronic kinetic energy of this fictitious system, 𝑇𝑠, can then be exactly expressed as a functional of 

the occupied orbitals (here assume to be real-valued, while spin variables are once more omitted for 

clarity):  

 𝑇𝑠[{𝜑𝑖
𝐾𝑆}] = −

1

2
∑ ∫𝜑𝑖

𝐾𝑆(𝑟 )∇2𝜑𝑖
𝐾𝑆(𝑟 )𝑑3𝑟𝑖 =

1

2
∑ ∫‖∇⃗⃗ 𝜑𝑖

𝐾𝑆(𝑟 )‖²𝑑3𝑟𝑖 .   (19) 

For the electron-electron repulsion energy, KS extracts the classical part (also known as the Hartree 

term) 𝐽. Consider two points 𝑟  and 𝑟 ′ in space, and two infinitesimal volumes 𝑑3𝑟 and 𝑑3𝑟′ around 

them. The infinitesimal electronic charges inside each of them are equal to 𝛿𝑞 = −𝑒𝑛(𝑟  ⃗)𝑑
3𝑟 and 

𝛿𝑞′ = −𝑒𝑛(𝑟  ⃗′)𝑑
3𝑟′. The electrostatic interaction energy between them is given by Coulomb’s law (in 

SI units): 𝛿2𝐽 =
1

4𝜋𝜀0

𝛿𝑞𝛿𝑞′

‖𝑟 ⃗⃗ −𝑟 ⃗⃗ ′‖
, hence, in atomic units, 𝛿2𝐽 =

𝑛(𝑟 ⃗⃗ )𝑛(𝑟 ⃗⃗ ′)

‖𝑟 ⃗⃗ −𝑟 ⃗⃗ ′‖
𝑑3𝑟𝑑3𝑟′. The total corresponding 

energy is obtained by summing all these infinitesimal contributions for all possible values of 𝑟  and 𝑟 ′. 

This is nothing else than the 𝐽 =
1

2
∫∫

𝑛(𝑟 ⃗⃗ )𝑛(𝑟 ⃗⃗ ′)

‖𝑟 ⃗⃗ −𝑟 ⃗⃗ ′‖
𝑑3𝑟𝑑3𝑟′  integral where the 1/2 factor prevents from 

double-counting. Obviously, 𝐽[𝑛] is an ED functional.  

We have now in hand two exact functionals for approximations of the kinetic energy and of the 

bielectronic repulsion. The missing energy is called the exchange-correlation energy 𝐸𝑥𝑐 that 

                                                           
9 The conditions so that is it possible are known to constitute the n-representability problem. 
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represents about 10% of the total electronic energy but that is fundamental to account for bonding 

and reacting. According to HK, it can be written as a functional of the ED of the real system. As this one 

is also the ED of the fictitious system by construction, 𝐸𝑥𝑐 is also a functional of ED of the fictitious 

system than can be directly calculated from KS orbitals (here again chosen real for simplicity): 

 𝑛(𝑟  ⃗) ≡ 𝑛
𝐾𝑆(𝑟  ⃗) = ∑ 𝜑𝑖

𝐾𝑆(𝑟 )²𝑖 .          (20) 

One can then write: 

 𝐸𝑒
(0)
= 𝑇𝑠[{𝜑𝑖

𝐾𝑆}] + ∫𝑛(𝑟  ⃗)𝑣𝑛𝑒(𝑟  ⃗)𝑑
3𝑟 +

1

2
∫∫

𝑛(𝑟 ⃗⃗ )𝑛(𝑟 ⃗⃗ ′)

‖𝑟 ⃗⃗ −𝑟 ⃗⃗ ′‖
𝑑3𝑟𝑑3𝑟′ + 𝐸𝑥𝑐[𝑛].  (21) 

The 𝐸𝑥𝑐[𝑛] functional is thus made of two components that gather the main quantum effects: the 

correlation kinetic energy that is the difference between the exact electronic kinetic energy and that 

of the KS system (in principle, all density functionals according to HK) and the bielectronic exchange-

correlation correction that one has to add to the Hartree energy to recover the full bielectronic 

repulsion energy (note that in KS DFT, the correlation energy is different from that defined by eq. 14): 

 𝐸𝑥𝑐[𝑛] = (𝑇 [𝑛] − 𝑇𝑠[𝑛]) + (𝑉𝑒𝑒[𝑛] − 𝐽[𝑛]).      (22) 

By minimizing the total GS electronic energy (variational DFT), it can be shown that the 𝜑𝑖
𝐾𝑆 obey 

the so-called KS equations, which take, once more, the form of an eigenvalue problem for each 𝜑𝑖
𝐾𝑆: 

 −
1

2
∇2𝜑𝑖

𝐾𝑆(𝑟 ) + 𝑣𝐾𝑆(𝑟 )𝜑𝑖
𝐾𝑆(𝑟 ) = 𝜀𝑖𝜑𝑖

𝐾𝑆(𝑟 ),      (23) 

where 𝑣𝐾𝑆 is the KS potential, which is the sum of the external, electrostatic and exchange-correlation 

potentials (this last one being defined as the functional derivative of 𝐸𝑥𝑐[𝑛] with respect to 𝑛):  

 𝑣𝐾𝑆(𝑟 ) = 𝑣𝑛𝑒(𝑟 ) + ∫
𝑛(𝑟 ⃗⃗ ′)

‖𝑟 ⃗⃗ −𝑟 ⃗⃗ ′‖
𝑑3𝑟′ +

𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝑟 ⃗⃗ )
.      (24) 

𝜀𝑖  are the orbital energies. It is important to notice that, in principle, 𝜑𝑖
𝐾𝑆 being related to the 

fictitious system, they are mainly mathematical intermediates with no direct chemical interpretation. 

Nevertheless, the energy of the highest occupied KS orbital is exactly equal (if the exact exchange-

correlation functional is used) to the negative of the ionization potential of the system. However, the 

energy of the lowest unoccupied orbital is not directly linked to the electron affinity due to the 

discontinuity of the exchange-correlation potential with respect to the electron number. Furthermore, 

the electronic energy is not equal to the sum of the energies of the occupied orbitals.10 

4.4. The self-consistent-field algorithm 

Coming back to eqs 23, instead of solving only one differential equation (the Schrödinger one) that 

involves 3𝑛𝑒 spatial variables, we now have to solve a system of 𝑛𝑒 integro-differential equations of 3 

variables, which is fully equivalent, but that is in principle much simpler to solve. It is however 

                                                           
10 This is also the fact in Hartree-Fock theory due to some double-counting. 
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fundamental to notice that these equations are actually coupled since, as 𝑣𝐾𝑆 depends on 𝑛, it is a 

function of all 𝜑𝑖
𝐾𝑆. The resolution of one of the KS equations thus requires in principle that the 

solutions of the 𝑛𝑒 − 1 other equations are known. 

It is the reason why they are solved using an iterative procedure called the self-consistent field (SCF) 

algorithm. First, initial approximate 𝜑𝑖
𝐾𝑆 are generated (this is the guess). They allow to build an 

approximate 𝑣𝐾𝑆, from which new 𝜑𝑖
𝐾𝑆 can be determined by solving eq. 23. These new orbitals allow 

for the computation of a (in general) improved 𝑣𝐾𝑆, which is reinjected in the KS equations to get new 

KS orbitals. Usually, at a certain point, the orbital variations between one cycle and the next one 

become small enough that we can consider that convergence has been reached. 

From a technical point of view, KS equations are solved using an expansion on a basis set: each 

orbital is written as a linear combination of fixed functions {𝜒𝜇(𝑟 )}: 

 𝜑𝑖
𝐾𝑆(𝑟 ) = ∑ 𝑐𝑖𝜇𝜒𝜇(𝑟 )𝜇 .         (25) 

Solving the KS equations is thus reduced to find the 𝑐𝑖𝜇 values, and eq. 23 can then be cast into a 

matrix form that can be efficiently solved by linear algebra packages and that can be parallelized for 

use in supercomputing centers. Once the 𝑐𝑖𝜇 are obtained, the ED can be built straightforwardly: 

 𝑛(𝑟 ) = ∑ 𝑃𝜇𝜈𝜒𝜇(𝑟 )𝜒𝜈(𝑟 )𝜇,𝜈  with 𝑃𝜇𝜈 = ∑ 𝑐𝑖𝜇𝑐𝑖𝜈𝑖  ,     (26)    

the 𝑃𝜇𝜈  matrix being called the density matrix. 

In principle, the basis set should be of infinite size, but in practice finite basis sets are used. They 

can be classified into two main categories: delocalized (for instance plane waves benefiting from fast 

Fourier-transform methods, wavelets…) and localized (centered at nuclear positions) ones. For these 

last ones, the most used are Slater functions (acronym STO) and Gaussian functions (GTO), inspired by 

the atomic orbitals (AOs) shape (but that are not AOs): 

𝜒𝜇,𝑛𝑙𝑚
𝑆𝑇𝑂 (𝑟 ) = ℵ𝜇𝑆𝑙𝑚(𝜃, 𝜙)𝑟

𝑛−1𝑒−𝜁𝜇‖𝑟 −𝑟𝜇⃗⃗⃗⃗ ‖      (27) 

 𝜒𝜇,𝑎𝑏𝑐
𝐺𝑇𝑂 (𝑟 ) = ℵ𝜇𝑥

𝑎𝜇𝑦𝑏𝜇𝑥𝑏𝜇𝑒−𝜁𝜇‖𝑟 −𝑟𝜇⃗⃗⃗⃗ ‖²,       (28) 

where ℵ𝜇 is the normalization constant, and 𝜁𝜇 the exponent controlling the decay rate of the 

exponential or of the Gaussian function. Eq. 27 is based on spherical coordinates with 𝑆𝑙𝑚 the angular 

part built on spherical harmonics. Eq. 28 uses instead a Cartesian representation. For instance, 𝑎𝜇 =

𝑏𝜇 = 𝑐𝜇 = 0 corresponds to an isotropic basis function (like a s-type OA). Common basis functions are 

tabulated and are available on online depositories. While Slater functions better mimic the behaviour 

of the ED at the nuclei and far from it, Gaussian functions have the advantage to lead to more easily 

calculable integrals thanks to the Gaussian product theorem. 
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In the case of heavy elements (e.g. transition metals, lanthanides, actinides) that contain a large 

number electrons, two main strategies have been proposed to speed up calculations. The first one 

(that can be used in popular DFT codes such as Gaussian®) is the approach based on pseudopotentials 

(also known as effective core potentials (ECPs)) that eliminate core orbitals and simulate their effect 

on the valence-electron system by adding extra potentials to the electronic Hamiltonian,11 which have 

been optimized for this particular purpose. Those developed in Los Alamos (LANL ECPs) and in 

Stuttgart-Dresden (SDD ECPs) are the most frequent ones. 

An alternative is that implemented in the ADF® software, which assumes that the core orbitals are 

unperturbed from the free atom to the molecular environment. These atomic orbitals can thus be 

calculated in a very fast way independently of the molecular system in a separate (and very accurate) 

calculation. As a consequence, the electrons populating the inner-shells are not included in the 

variational KS problem, but their electron density can be included in the density analyses (for instance 

in QTAIM calculations). 

4.5. The Perdew’s scale of practical DFT 

Performing a DFT calculation thus requires choosing two main parameters: the basis set (and if 

needed the pseudopotential/frozen core) and the exchange-correlation functional. Indeed, in practice, 

one has to use an approximation for 𝐸𝑥𝑐[𝑛], usually ranked using the DFT Jacob’s ladder designed by 

Perdew. The first rung collect the Local Density Approximations (LDAs) than only use 𝑛(𝑟  ⃗); the second, 

the Generalized Gradient Approximations (GGAs, known examples are PBE and BLYP) use 𝑛(𝑟  ⃗) and its 

gradient ∇⃗⃗ 𝑛(𝑟  ⃗); the third, metaGGAs (such as TPSS, M06L), are based on 𝑛(𝑟  ⃗), ∇⃗⃗ 𝑛(𝑟  ⃗) and the Laplacian  

∇²𝑛(𝑟  ⃗)  (or the KS kinetic energy density). Such ingredients are based on Taylor expansion (involving 

the two first ED spatial derivatives) of the functional with respect to the ED. 

The simplest exchange functional is certainly the Dirac one, which is exact for the jellium model 

(electron gas immerged into a uniform positive background), here in its spin-unpolarized version: 

 𝐸𝑥
𝐷𝑖𝑟𝑎𝑐[𝑛] = −

3

4
(
3

𝜋
)
1/3

∫𝑛(𝑟  ⃗)
4/3𝑑3𝑟.       (29) 

Incidentally, it can be noticed that the KS kinetic energy of this jellium model can also be exactly 

expressed as a density functional (equivalent, in that very particular case, to the exact orbital functional 

given by eq. 19), called the Thomas-Fermi (TF) functional: 

 𝑇𝑠
𝑇𝐹[𝑛] =

3

10
(3𝜋²)2/3 ∫𝑛(𝑟  ⃗)

5/3𝑑3𝑟,       (30) 

which enters the expression of the Electron Localization Function (ELF). 

                                                           
11 ECPs also allows for adding relativistic effects at low cost. 
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Coming back to exchange-correlation, as the ED in molecules is far from being homogeneous, 

improvements to 𝐸𝑥
𝐷𝑖𝑟𝑎𝑐 have been proposed by introducing a local enhancement factor 𝐹𝑥(𝑟  ⃗): 

 𝐸𝑥
𝐷𝑖𝑟𝑎𝑐𝐼𝑚𝑝

[𝑛] = −
3

4
(
3

𝜋
)
1/3

∫𝑛(𝑟  ⃗)
4/3𝐹𝑥(𝑟  ⃗)𝑑

3𝑟.      (31) 

Many of them employ the following reduced density gradient (RDG) as the primary element: 

 𝑠(𝑟  ⃗) =
1

2(3𝜋2)1/3
‖∇⃗⃗ 𝑛(𝑟 ⃗⃗ )‖

𝑛(𝑟 ⃗⃗ )
4/3 ,        (32) 

which is dimensionless and that naturally emerges from the Taylor expansion of the exchange energy 

far small density variations with respect to jellium. 𝑠(𝑟  ⃗) is never negative, is equal to zero if ED is locally 

uniform, and tends toward infinity in the asymptotic ED tail. It is also the basis of the non-covalent 

index (NCI). In 1988, Becke proposes a simple, but accurate enhancement factor based on this RDG: 

 𝐹𝑥
𝐵𝑒𝑐𝑘𝑒88(𝑟  ⃗) = 1 +

𝛿𝑠(𝑟 ⃗⃗ )²

1+𝛾𝑠(𝑟 ⃗⃗ )𝑠𝑖𝑛ℎ
−1(𝑠(𝑟 ⃗⃗ ))

,       (33) 

where  and  are two constant values, independent of the chemical system under investigation. Such 

coefficients involved in various density functional approximations can be either determined from exact 

constraints (“first-principles” approach to DFT development) of by fitting to reference values 

(“pragmatical” approach).12 

The two last rungs of the DFT scale depart a little bit for the pure ED point of view since they involve 

the explicit contribution of KS orbitals. Hyper-GGAs (also formerly known as hybrid functionals) include 

information of only occupied KS orbitals. This is in general done by mixing to a GGA or metaGGA 

exchange functional a certain amount of the so-called exact exchange (xx),13 which is non-local since it 

requires the orbital information at two different points 𝑟1⃗⃗⃗   and 𝑟2⃗⃗  ⃗: 

 𝐸𝑥𝑥[{𝜑𝑖,𝑜𝑐𝑐
𝐾𝑆 }] = −

1

2
∑ ∑ ∫∫

𝜑𝑖
𝐾𝑆(𝑟1⃗⃗⃗⃗ )𝜑𝑗

𝐾𝑆(𝑟1⃗⃗⃗⃗ )𝜑𝑖
𝐾𝑆(𝑟2⃗⃗⃗⃗ )𝜑𝑗

𝐾𝑆(𝑟2⃗⃗⃗⃗ )𝑑
3𝑟1𝑑

3𝑟2

‖𝑟1⃗⃗⃗⃗ −𝑟2⃗⃗⃗⃗ ‖

𝑛𝑒
𝑗=1

𝑛𝑒
𝑖=1 .   (34) 

The venerable (but old-fashioned) B3LYP is certainly one of the most celebrated hybrid functionals. 

Other popular examples are, PBE0 and M06-2X.  

In general, these four first rungs fail at correctly account for van der Waals interactions of the 

dispersion (i.e. London) type (for instance, the noble gas dimers, the dimers of methane or of benzene). 

A popular and very fast way to correct such deficiencies is the semi-empirical scheme proposed by 

Grimme (leading to the so-called D, D2, D3, and D4 models), based on pair-potentials (that can be, if 

necessary, complemented by other many-body contributions), as those that can be found in classical 

force fields: 

                                                           
12 Obviously, both “first-principles” and “pragmatical” approaches can be mixed. 
13 The xx functional given by eq. 33 (for real orbitals) is the same orbital functional as that used to calculate 
exchange in HF theory. However, the corresponding KS exact exchange energy in general differs from the HF 
exchange energy since the KS orbitals and the HF orbitals are different for non-trivial systems. 
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 𝐸𝑑𝑖𝑠𝑝 = −∑ 𝑓𝑑𝑎𝑚𝑝(𝑅𝛼𝛽)
𝐶6
𝛼𝛽

𝑅𝛼𝛽
6𝛼<𝛽 ,       (35) 

where the double sum is made on all nuclei pair, 𝑅𝛼𝛽 denoting the distance between nucleus  and 

nucleus , 𝑓𝑑𝑎𝑚𝑝 a damping function that controls the switching of the correction, and the dispersion 

coefficient 𝐶6
𝛼𝛽

 being tabulated or computed following different approaches. 

Alternatively, dispersion interactions can also be accurately modelled by density functional 

approximations belonging to the fifth rung of Perdew’s scale, which involve also unoccupied KS 

orbitals, mainly based on the double hybrid scheme (stemming from second-order perturbation 

theory: B2P-LYP, PBE-QIDH…) or on the random phase approximation (RPA). While in general more 

accurate, such approximations suffer from a higher computational time, so that they are not yet 

routinely used for DFT applications on medium-size or big systems. 

In general, all these density functional approximations lead to integrals that cannot be solved in a 

full analytical way. They are thus evaluated using numerical quadrature techniques. Integrals are thus 

replaced by a discrete sum using a grid of predefined points 𝑟𝑘⃗⃗  ⃗ and integrations weights 𝑤𝑘, according 

to (for any local 𝑔(𝑟 ) function): 

 ∫𝑔(𝑟 )𝑑3𝑟 = ∑ 𝑤𝑘𝑔(𝑟𝑘⃗⃗  ⃗)𝑘 .        (36) 

As Cartesian grids are not efficient for such purposes, the molecular integrals are approximated as 

a sum of atomic sub-integrals (often using Becke’s partitioning scheme), each of which is then 

evaluated by quadrature in spherical polar coordinates (∫𝑔(𝑟, 𝜃, 𝜙)𝑑3𝑟 ≈ ∑ 𝑤𝑖
𝑟 ∑ 𝑤𝑗

Ω𝑔(𝑟𝑖, 𝜃𝑗𝑗 , 𝜙𝑗
 
𝑖 )) 

with a Lebedev angular grid and a radial angular grid. The size of such grids is also an important 

parameter that controls both calculation accuracy and computational time. 

We will not discuss the performances of such proposed functionals (that often rely on more or less 

spurious error cancellations). We instead refer the interested reader to the recent benchmark paper 

by Goerigk and Mehta cited in the bibliographic section that affords an enlightening and pragmatic 

overview of the advantages and drawbacks of the most frequent approximations. 
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